3,081 research outputs found

    Static Partitioning of Spreadsheets for Parallel Execution

    Get PDF

    Correlation between Compact Radio Quasars and Ultra-High Energy Cosmic Rays

    Get PDF
    Some proposals to account for the highest energy cosmic rays predict that they should point to their sources. We study the five highest energy events (E>10^20 eV) and find they are all aligned with compact, radio-loud quasars. The probability that these alignments are coincidental is 0.005, given the accuracy of the position measurements and the rarity of such sources. The source quasars have redshifts between 0.3 and 2.2. If the correlation pointed out here is confirmed by further data, the primary must be a new hadron or one produced by a novel mechanism.Comment: 8 pages, 3 tables, revtex. with some versions of latex it's necessary to break out the tables and latex them separately using article.sty rather than revtex.st

    The alpha-gamma transition of Cerium is entropy-driven

    Full text link
    We emphasize, on the basis of experimental data and theoretical calculations, that the entropic stabilization of the gamma-phase is the main driving force of the alpha-gamma transition of cerium in a wide temperature range below the critical point. Using a formulation of the total energy as a functional of the local density and of the f-orbital local Green's functions, we perform dynamical mean-field theory calculations within a new implementation based on the multiple LMTO method, which allows to include semi-core states. Our results are consistent with the experimental energy differences and with the qualitative picture of an entropy-driven transition, while also confirming the appearance of a stabilization energy of the alpha phase as the quasiparticle Kondo resonance develops.Comment: 5 pages, 6 figure

    Is the Mott transition relevant to f-electron metals ?

    Full text link
    We study how a finite hybridization between a narrow correlated band and a wide conduction band affects the Mott transition. At zero temperature, the hybridization is found to be a relevant perturbation, so that the Mott transition is suppressed by Kondo screening. In contrast, a first-order transition remains at finite temperature, separating a local moment phase and a Kondo- screened phase. The first-order transition line terminates in two critical endpoints. Implications for experiments on f-electron materials such as the Cerium alloy Ce0.8_{0.8}La0.1_{0.1}Th0.1_{0.1} are discussed.Comment: 5 pages, 3 figure

    The Origin of Galactic Cosmic Rays

    Get PDF
    Motivated by recent measurements of the major components of the cosmic radiation around 10 TeV/nucleon and above, we discuss the phenomenology of a model in which there are two distinct kinds of cosmic ray accelerators in the galaxy. Comparison of the spectra of hydrogen and helium up to 100 TeV per nucleon suggests that these two elements do not have the same spectrum of magnetic rigidity over this entire region and that these two dominant elements therefore receive contributions from different sources.Comment: To be published in Physical Review D, 13 pages, with 3 figures, uuencode

    Thermal evolution of the primordial clouds in warm dark matter models with keV sterile neutrinos

    Get PDF
    We analyze the processes relevant for star formation in a model with dark matter in the form of sterile neutrinos. Sterile neutrino decays produce an X-ray background radiation that has a two-fold effect on the collapsing clouds of hydrogen. First, the X-rays ionize the gas and cause an increase in the fraction of molecular hydrogen, which makes it easier for the gas to cool and to form stars. Second, the same X-rays deposit a certain amount of heat, which could, in principle, thwart the cooling of gas. We find that, in all the cases we have examined, the overall effect of sterile dark matter is to facilitate the cooling of gas. Hence, we conclude that dark matter in the form of sterile neutrinos can help the early collapse of gas clouds and the subsequent star formation.Comment: aastex, 31 pages, 4 figures; one figure and some references added, minor changes in the text; to appear in Astrophysical Journa

    Analysis of the Influence of Tool Geometry on Surface Integrity in Single-lip Deep Hole Drilling with Small Diameters

    Get PDF
    AbstractThe industrial relevance of bore holes with small diameters and high length-to-diameter ratios rises with the growing requirements on parts and the tendency of components for downsizing. Examples for components requiring deep holes with small diameters exist in the automotive industry; for the production of injectors for fuel injection as well as for medical and biomedical parts. Based on growing functional requirements, for example with the increase in injection pressure to improve the efficiency of the combustion process in diesel engines, the requirements on the surface integrity of bore holes also increase. To meet these requirements, an adaption of the deep hole drilling process is necessary. In this paper the influence of tool geometry, coating and cutting data on the bore hole quality and tool wear will be presented

    Neutrino Fluxes from Active Galaxies: a Model-Independent Analysis

    Full text link
    There are tantalizing hints that jets, powered by supermassive black holes at the center of active galaxies, are true cosmic proton accelerators. They produce photons of TeV energy, possible higher, and may be the enigmatic source of the highest energy cosmic rays. Photoproduction of neutral pions by accelerated protons on UV light is the source of the highest energy photons, in which most of the bolometric luminosity of the galaxy may be emitted. The case that proton beams power active galaxies is, however, far from conclusive. Neutrinos from the decay of charged pions represent an uncontrovertible signature for the proton induced cascades. We show that their flux can be estimated by model-independent methods, based on dimensional analysis and textbook particle physics. Our calculations also demonstrate why different models for the proton blazar yield very similar results for the neutrino flux, consistent with the ones obtained here.Comment: Latex 2.09 with epsf.sty. 12 pages, 2 postscript figures. Compressed postscript version of paper with figures also available soon at http://phenom.physics.wisc.edu/pub/preprints/1997/madph-97-982.ps.Z or at ftp://phenom.physics.wisc.edu/pub/preprints/1997/madph-97-982.ps.

    Monitoring of the fatigue state of single-lip deep-drilled specimens made of the quenched and tempered steel AISI 4140 using micromagnetic methods

    Get PDF
    Fatigue is one of the main causes for the failure of technical components. Therefore, the monitoring of fatigue-related material degradation is a target-oriented way to extend the lifetime of safety-relevant components. In terms of sustainability and resource conservation, the implementation of reliable fatigue monitoring is of crucial importance. Fatigue damage is manifested by a variety of microstructural and micromechanical property changes such as grain refinement, relaxation of residual stresses, increase of dislocation density and hardness change. An application of micromagnetic techniques is very promising, since it is known that Barkhausen noise analysis and eddy current testing are sensitive to these parameters. This work deals with the separation of the micromagnetic parameters with respect to fatigue-induced changes. This separation is necessary to identify, quantify and evaluate the relevant fatigue damage mechanisms and thereby assess the remaining lifetime of the monitored components. In this work, multiple amplitude fatigue tests were performed on specimens drilled under different conditions and as a consequence partly feature a white etching layer. Under these aspects the capability of Barkhausen noise analysis and eddy current testing was compared and assessed
    • …
    corecore