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Abstract. Spreadsheets are popular tools for end-user development and
complex modelling but can suffer from poor performance. We present an
iterative, greedy algorithm for automatically partitioning spreadsheets
into load-balanced, acyclic groups of cells that can be scheduled to run
on shared-memory multicore processors. A big-step cost semantics for
the spreadsheet formula language is used to estimate work and guide
partitioning. The algorithm does not require end-users to modify the
spreadsheet in any way. We implement three extensions to the algorithm
for further accelerating computation; two of which recognise common
cell structures known as cell arrays that naturally express a degree of
parallelism. To the best of our knowledge, no such automatic algorithm
has previously been proposed for partitioning spreadsheets. We report a
maximum 24-fold speed-up on 48 cores.
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1 Introduction

Spreadsheets are popular tools for end-user development, modelling and edu-
cation. Spreadsheet end-users are usually domain experts but are seldom IT
professionals. They create and maintain large, complex spreadsheets over sev-
eral years [14] and this complexity often leads to errors [10] and poor perfor-
mance [19].

In recent years, multicore processors have become ubiquitous. For spread-
sheet end-users to benefit from this powerful hardware, they should have a tool
at their disposal to automatically identify and exploit parallelism in their spread-
sheets. Spreadsheets lend themselves well to parallelization as they are first-order
functional languages.

In this paper, we present an iterative, greedy algorithm for automatically
and statically partitioning a spreadsheet into load-balanced, acyclic groups of
cells. Partitioning is guided by a cost model based on a big-step semantics to
estimate the work of cells and to produce well-balanced partitions. The partition
can be seen as a condensation of the cell dependency graph. We implement the
algorithm in the research spreadsheet application Funcalc [18] and we believe
this is the first thorough investigation of static partitioning of spreadsheets.
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2 Related Work

Spreadsheet research has primarily focused on error detection, handling and
mitigation [6] and less on parallelization. In this section, we briefly discuss some
of the research relevant to spreadsheet parallelism.

There exist multiple distributed systems for spreadsheet calculation like Ac-
tiveSheets [3], Nimrod [2] and HPC Services for Excel [16]. All three systems
require manual modification of the spreadsheet which may take a substantial
amount of time or require help from experts.

In his 1996 dissertation, Wack [21] investigated parallelization of spreadsheet
programs using distributed systems and an associated machine model. He par-
titioned and scheduled a set of predefined patterns and parallelized them via
message-passing in a network of work stations. Our algorithm does not rely on
pre-defined patterns or an existing network of work stations but instead targets
shared-memory multicore processors.

Biermann et al. [5] rewrote so-called cell arrays to higher-order, compiled
function calls on arrays completely transparent to end-users. Their approach
parallelized the internal evaluation of each rewritten array but evaluated disjoint
cell arrays sequentially.

LibreOffice Calc automatically compiled data-parallel expressions into OpenCL
kernels that execute on AMD GPU’s [20]. They reported a 500-fold speed-up for
a particular spreadsheet.

In recent work [4], we presented a task-based parallel spreadsheet interpreter,
dubbed Puncalc, that automatically discovers parallelism and finds cyclic refer-
ences in parallel. The system targets shared-memory multiprocessors and does
not require modification of the spreadsheet. The algorithm obtained roughly a
16-fold speed-up on 48 cores on the same set of benchmark spreadsheets used
in this paper. Puncalc is a dynamic algorithm that may not distribute work as
well as the static approach presented here.

Our static partitioning algorithm is primarily inspired by the work of Sarkar
et al. [17] on the first-order functional language SISAL which was intended to su-
persede Fortran as the primary language for scientific computing. Sarkar worked
on an optimising compiler that automatically extracted parallelism by analysing
an intermediate graph representation of the program. The program was then
partitioned at compile-time and scheduled onto available processors at runtime.
SISAL programs were shown to run on par with Fortran programs on a contem-
porary supercomputer [8].

3 Contributions

We present the following key contributions:

1. A cost model based on a big-step cost semantics for Funcalc’s formula lan-
guage (section 5).

2. An algorithm for statically partitioning spreadsheets and scheduling them
on shared-memory multicore processors (section 6).
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3. Three extensions to the algorithm for further accelerating execution of the
partitioned spreadsheet. Two of the extensions exploit common cell struc-
tures known as cell arrays that naturally express some degree of paral-
lelism (sections 7.1 to 7.3).

4 Background: Spreadsheet Concepts

We now introduce some basic spreadsheet concepts deemed necessary for reading
this paper. Readers already familiar with the subject can skip this section while
those interested in learning more are encouraged to read [18].

4.1 Formulas and Cell References

A cell can contain either a constant, such as a number, string or error (e.g. #NA
or #DIV/0!); or a formula expression denoted by a leading equals character
(e.g. =1+2). Each cell has a unique address denoted by its column and row
where columns start at A and rows at 1. Formulas can refer to other cells by
using their addresses, or they can refer to an area of cells using the addresses of
two corner cells separated by a colon. For example, cell C1 in fig. 1a refers to the
cells A1 and A2 while cell C3 refers to the cell area spanned by the cells A1 and
B2.

Cell references may be relative or absolute in each dimension. Relative ref-
erences refer to other cells using offsets, so the referenced cell depends on the
position of the referring cell. Absolute references do not change and are prefixed
by a dollar sign. For example, the formula =$A2 in cell C2 refers absolutely to
column A but relatively to row 2, so copying it to cell C3 would change the cell
reference to $A3. Copying it to cell D2 would not change the reference since the
column is absolute. This reference scheme is called the Al format. Relative ref-
erences are more clearly expressed in the R1C1 format where relative references
are denoted by square brackets containing an offset and absolute references are
denoted by the absence of square brackets and an absolute row or column num-
ber. If the referred cell is in the same row or column, the offset can be omitted,
but we explicitly use a zero offset for clarity. The same spreadsheet is shown
in fig. 1b in R1C1 format.

A B C A B C
1| 10 | 20 |=A1+A2 1| 10 | 20 |=R[+0]C[-2]+R[+1]C[-2]
2| 30 | 40 | =$A2 2| 30 | 40 =R[+0]C1
3 =A1:B2 3 =R[+0]C[-3]:R[+1]C[-2]

(a) (b)

Fig.1: An example spreadsheet in A1 and R1C1 reference formats.
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4.2 The Support and Dependency Graphs

Cell references establish a cell dependency graph. Its inverse, the support graph,
captures cell support and is analogous to a dataflow graph where nodes are cells
and data flows along the edges from dependent cells to supported cells. Cell C1
in fig. 1la depends on Al and A2 while both A1 and A2 support C1. Both the
dependency and support graphs may be cyclic.

4.3 Recalculation

There are two major types of recalculation. Full recalculation unconditionally
reevaluates all formula cells. Minimal recalculation only reevaluates the transitive
closure of cells reachable, via the support graph, from cells modified by the user.
In fig. 1a, whenever a user edits the value in A1, cells C1 and C3 must be updated
to reflect the change. The static partitioning algorithm considers all formula cells
in the spreadsheet and thus performs a full recalculation.

4.4 Cell Arrays

Also known as copy-equivalent formulas [12] or cp-similar cells [1], cell arrays [9]
denote a contiguous rectangular area of formulas that share the same formula
expression in RIC1 format and thus the same computational semantics [9]. A
cell array consisting of 3 rows and 1 column in column B is shown in fig. 2a in
A1 format and in fig. 2b in R1C1 format. The latter format clearly shows that
the formulas in the cell array share a common expression.

Cell arrays are common in spreadsheets because they describe bulk opera-
tions on collections of cells similar to e.g. map and reduce on arrays in functional
programming. These bulk operations can usually be parallelized as we shall see
later. For example, the cell array in fig. 2a effectively describes a map operation
on column A. Dou et al. [9] found that 69% (7416 out of 10754) of spread-
sheets containing formulas from the EUSES [11] and Enron [13] corpora also
contained cell arrays, and that they contained on average 80 cell arrays each.
The benchmark spreadsheets from LibreOffice Calc used in this paper are also
mainly comprised of large cell arrays.

A B A B A B A B
1|1 [=A1%2 1|1 |[=R[+0]C[-1]%2 1|1 |=R[+1]C[+0]*2 1|1 |=R[+0]C[-1]%2
2|2 [=A2%2 2|2 |=R[+0]C[-1]%2 2|2 |=R[+1]C[+0]*2 2|2 |=R[+0]C[-1]%*2
3 |=A3%2 3|3 |=R[+0]C[-1]%2 3| 3 |=R[+1]C[+0]*2 3|3 |=R[+0]C[-1]%2
(a) (b) (c) Transitive cell ar- (d) Intransitive cell
ray. array.

Fig.2: Each cell in the cell array of column B in fig. 2a takes the corresponding
value in column A and multiplies it by two.
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Cell arrays can be classified as either transitive (fig. 2¢) or intransitive (fig. 2d) [5].
If a cell array only contains formulas that do not reference the cell array itself, we
say that it is intransitive, otherwise it is transitive. The need for this distinction
will become clear later in sections 6 and 7 when we describe the algorithm and
two of its extensions.

4.5 Array Formulas

When a user selects a cell area and enters a formula that returns an array, the
elements of the array are distributed across the selected area. The cells in the
area share the same singular formula expression but each cell refers only to part
of the array.

5 Cost Model

Any static partitioning algorithm needs a cost model to produce well-balanced
partitions. Specifically, we are concerned with two metrics: the cost of evaluating
a cell and the cost of synchronizing groups of cells in the partition when it is
run. We discuss these in turn.

5.1 Big-Step Cost Semantics

We have developed a big-step cost semantics for Funcalc’s formula language
which we only briefly discuss here due to space limitations. We refer interested
readers to the full details in our technical report [7]. The general judgement form
o,a e |} v,c states that given environment o mapping cells to values and an
environment « mapping cells to array formulas, the expression e may evaluate
to some value v at cost c. The rule for the SUM built-in function is shown below.

oate; Jv,er ... o,abey,dun, e,

— — (sum)
o, SUM(er,. .. en) D v 1+D00 ¢

Rule (sum) states that if all its argument expressions evaluate to values at some
cost, the function call may evaluate to the sum of those values. The total cost is
the sum of costs of the individual function arguments plus one. There are addi-
tional rules for handling errors in function arguments. The semantics currently
use unit costs but we intend to use more precise costs in the future such as those
obtained from profiling.

5.2 Synchronization Cost

The framework developed by Sarkar et al. [17] targeted both shared-memory
and distributed systems so their cost model had to accommodate different types
of communication costs. For example in a distributed setting, inter-cluster com-
munication is usually more expensive than intra-cluster communication. Our al-
gorithm targets modern shared-memory multicore architectures where the cost
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model must capture synchronization between different threads. For simplicity, we
use a constant cost for synchronization between threads based on benchmarking
results. While this does not take memory latency and other hardware aspects
into account, it is currently sufficient for generating partitions capable of ac-
celerating spreadsheet computation. Moreover, it is difficult to approximate the
low-level synchronization costs that are subject to the whims of the operating
system over which we have no control.

6 Static Partitioning Algorithm

Sarkar [17] showed that finding the optimal partition is NP-complete in the
strong sense and developed an approximate partitioning algorithm which was
close to optimal in practice. In this section, we present a similar partitioning al-
gorithm for spreadsheets. After assigning costs to all formula cells, the algorithm
can start partitioning. It consists of two steps: iterative merging and scheduling.
Afterwards, we introduce a preprocessing step in section 6.3 that speeds up par-
titioning and a postprocessing step in section 6.4 that applies an optimisation
to sequential paths in the resultant partition.

6.1 Problem Formulation

We view a spreadsheet as a graph G = (V, E)) consisting of a set of formula cells
V ={co,...,cn} and a set of support edges E C (V x V). We can follow the edges
in the opposite direction to follow cell dependencies. Inspired by Sarkar [17], we
wish to partition V into an acyclic partition Py = {7,..., 7} consisting of
disjoint, load-balanced groups 7; where the cells in a group are a subset of V:
CEeLLS(7;) C V, all formula cells are contained in some 7: [J;~, CELLS(7;) =
V, and Py minimizes an objective function F: argmin F(P) = Py. Note that
we do not require that Py be the optimal partition. The objective function F
approximates the balance between parallelism and synchronization cost of a
partition, and is introduced in the next section. We can view a partition P as a
condensation of the cell graph where subsets of cells have been assigned to some
group 7;. We refer to this condensed graph as the 7-graph. We require that any
partition P produced by the algorithm be acyclic to ease the scheduling of the
partition, but defer a detailed discussion. We define the following operations on
a group 7.

CELLS(7) - The set of cells in 7.

— PRED(7) - The set of predecessors of 7.

— Succ(r) - The set of successors of 7.

— TIME(7) - The estimated total time to recalculate each cell in CELLS(7).
— SYNC(7) - The synchronization cost of 7.

The predecessors and successors are determined by the dependency and support
edges of the cells in CELLS(T).
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6.2 Iterative, Greedy Group Merging

We now iteratively and greedily merge pairs of 7’s as guided by the objective
function F', until we reach the coarsest partition consisting of a single 7 con-
taining all cells with no parallelism but no synchronization overhead either. We
select the intermediate partition that minimized F' as the output of the algo-
rithm. The objective function F' is the maximum of the critical path term and
the overhead term [17].

Sync(P) =Y " ([PrED(7)| + [Succ(r)|) - Syne(r) (1)
TEP
Time(P) = > TIME(T) (2)
TEP
B CPL(P) Sync(P)
F(P) = maz (Time(P) SN Time(P)) ®)

The total synchronization cost of P in equation (1) is the number of predecessors
and successors of each 7 times its synchronization cost. The total time to execute
P in equation (2) is the summation of the time taken to execute each 7 € P, and
is constant throughout partitioning since the amount of work in the partition
remains constant but its distribution between 7’s does not. Finally, the objective
function in equation (3) is the maximum of the critical path and overhead terms.
The former term is the critical path length (denoted as CPL in the equation),
i.e. the most expensive sequential path in the 7-graph, divided by the ideal
parallel execution time of P given N total processors. The overhead term is the
synchronization cost of P normalised by the time taken to execute P.

A fine partition with a critical path length close to the ideal execution time
would have a critical path term close to one, but is likely to have dominant
overhead term since many 7’s need to synchronize. Conversely, a coarser partition
may have a smaller overhead term as the coarseness of the partition means less
groups need to synchronize, but have a dominant critical path term since many
7’s might have been merged into the critical path. In this way, the merging step
uses F' to balance the trade-off between parallelism and synchronization.

When selecting the groups 71 and 75 to merge, we select 7 as the group with
the largest overhead in hopes of reducing the partition’s overall synchronization
cost [17]. We select 72 as the group that yields the smallest change in the critical
path length of the partition if we were to merge it with 7;. During iteration, we
record F'(P) for each partition and return the partition which minimized F' as
the output of the algorithm. We call this partition Py.

Acyclic Constraint To keep all partitions acyclic, we impose an acyclic con-
straint! on each partition. When two groups 7; and 7 are selected for a merge,

! Originally referred to as the convezity constraint in [17] as it relates to convex sub-
graphs.
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we also merge any 7 that lies on a path between 7 and 79, and thus outside the
convex subgraph defined by 7 and 7. Definition 1 defines a convex subgraph in
general [17].

Definition 1. A subgraph H of a directed graph G is convez if for every pair of
vertices a,b € H, any path between a and b is fully contained in H.

For example, if there is a path 7y — 7 — 75 and we did not merge 7 with 71 and
Ty, we would introduce a cycle in the merged 7-graph. Intuitively, definition 1
prohibits 7’s from spawning and waiting for work (a loop between two groups),
and fork-join parallelism where the fork e.g. happens at 71 and the join at 7.
While this may remove some parallelism from the partition, it greatly simplifies
scheduling.

6.3 Cell Array Preprocessing

We include a preprocessing step in the algorithm that assigns each cell array to
its own 7 in the initial partition so we can exploit its internal parallelism.

This has two advantages. First, it decreases the number of groups that need to
be considered for merging, lowering the partitioning time. Second, the algorithm
initially needs to determine the predecessors and successors of each 7, which is
necessary for estimating the synchronization cost of a partition and keeping track
of dependencies when merging. Instead of querying each cell in a potentially large
cell array in some 7, we can query only its four corner cells to quickly determine
its predecessors PRED(7) that also contain cell arrays. Due to the complementary
nature of the support and dependency edges, this also establishes that 7 is a
successor of each 7, € PRED(7). This also lowers the partitioning time. Any
other cases are handled by querying each cell.

The preprocessing step can be said to be optimistic as many real-world
spreadsheets are structured in a highly regular manner and contain large cell
arrays that refer to other cell arrays, so we expect that the preprocessing will
usually succeed. Most of the benchmark spreadsheets fall into this category which
the preprocessing step can quickly deduce.

Determining Reachability Consider the scenario in fig. 3a for two single-
column cell arrays spanned by the cell areas B1:B255 and C1:C255 respectively.
The top and bottom cell references of the blue cell array in column B can both
reach only constants in column A and so we cannot conclude anything about the
predecessors of the remaining cells in the cell array (a subset of them might be
able to reach some other cell array). On the other hand, the top and bottom cells
of the red cell array in column C can both reach the blue cell array in column
B. We can thus conclude that all the cells in the range C2:C254 can also reach
the blue cell array by virtue of the identical relative cell references shared by the
cells. If the top and bottom cells of column C’s cell array could reach different
7’s, as in fig. 3b, we cannot conclude anything about the other cells in the cell
array and must instead query each individual cell.
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A B C A B C
1 | 1| =Al+1 < =Bi+1 1| 1| =Al+1 «—=Bi+1
2 | 2| =A2+1 < =B2+1 2 [ 2| =A2+1 «}—=B2+1
254[...] L —F— ... 254 .. . —]— ...
255]255| =A255+1<— =B255+1 255|255 =A255+1«— =B255+1
(a) (b)

Fig. 3: Preprocessing of different cell arrays.

Array formulas are also analysed and straight forward to handle since their cells
share only a single formula expression. Due to space limitations, we omit their
analysis here.

We exclude any corners whose formulas are fully transitive, i.e. all cells they
refer to are contained in the cell array itself. The rest of the analysis has three
primary cases. In the first case, we handle cell references that are absolute in
both dimensions (e.g. $4$1 or $A$1:$B$2). If a cell array contains a fully absolute
cell reference, then every cell in the cell array can reach it since it refers to the
same cell or cell area regardless of the relative position of the referring cell. Any
absolute cell areas referenced from the cell array must be fully enclosed in the
reachable 7. If they are not, the other part of the cell area may belong to some
7; which we will only discover by examining each cell in the referenced cell area.

In the second case, we observe that even cell references that are not fully
absolute can be considered absolute in the context of a cell array as shown
in fig. 4. Since the cell array in column B refers to cell A1 using a row-absolute
but column-relative reference, all cells in the cell array will always refer to that
cell and it can be viewed as a constant. The same is true for row-relative, column-
absolute references and single-row cell arrays.

A B
=PI()

2 =2xA$1xA4

1
2
3 6 =2xA$1xA3
4
5

Fig. 4: Spreadsheet calculating the circumference 27r of various circle radii. Cell
A1 holds the constant m which the cell array in column B refers to. Since the
reference is row-absolute and column-relative, all cells in the cell array always
refer to A1. This scenario occurs in the building-design spreadsheet.

The third and final case handles any other relative cell references. For each
reference in the cell array’s formula expression, we consider each unique pair of
corners and examine what cells or areas they refer to. This is necessary since
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all pairs, even diagonally opposite corners, may refer to the same 7. If for any
pair of corners, one of them is transitive, we disregard the pair. For single-cell
references, if both corners of a cell array in 7; can reach cells belonging to the
cell array of some 7;, we add 7; as a predecessor of 7;. For cell areas, we require
the same conditions but also require that the referenced cell areas are wholly
contained in the reachable 7; as earlier for the second case. Any cells that are
not part of a cell array, and thus not handled by this analysis, are put into their
own initial 7. We are currently working on a formal proof of the analysis.

6.4 Postprocessing

The algorithm is approximate and is not guaranteed to produce the optimal
partition [17] for a given spreadsheet, so it may miss obvious optimisations in
the final partition. One such case is a sequential chain of dependencies in the
T-graph whose parts are assigned to different 7’s. We could avoid unnecessary
synchronization by instead assigning the entire chain to a single 7. Therefore,
once the final partition has been found, we traverse the 7-graph to find such
chains and ensure that they are assigned to a single 7. Such a scenario occurs in
the building-design spreadsheet.

6.5 Scheduling Partitions

The merging step of the algorithm leaves us with a final partition Py = {19, ..., 7 }.
Since Py is acyclic, we can schedule the partition by first topologically sorting
the 7-graph by its dependencies then create tasks using the Task Parallel Library
(TPL) [15] to run each 7. We iterate through the topologically sorted list and
either (1) mark a 7 without any dependencies as a source and create a task to
execute it; (2) create a TPL continuation task that waits for all its dependent
tasks to finish before starting. We then start all source tasks and wait for all
tasks to complete. Each non-source task first checks if all its dependent tasks
ran to normal completion. If not, the task immediately stops and propagates
any errors to its successors so that the execution can quickly terminate.

7 Extensions

Cells within each 7 are evaluated sequentially and the algorithm only parallelizes
the execution of the 7-graph, disregarding any additional parallelism inside each
7. In this section, we present three extensions to the algorithm to remedy this:
the first extension uses nested parallelism within cell arrays; the second extension
uses our parallel spreadsheet interpreter [4] to run the cells in each 7 in parallel;
the third extension uses the rewriting tool from [5] to rewrite cell arrays to calls
to compiled higher-order functions that can also be executed in parallel.
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7.1 Nested Cell Array Parallelism

This extension relies on the fact that spawning nested TPL tasks within a task
will enqueue them in the current threadpool thread’s local queue, circumventing
the global queue and possibly reducing contention. However, we cannot neces-
sarily spawn a task for each cell in the cell array since its references may be
transitive [5].

In fig. 5a, each reference in the formula of the cell array in column B refers to a
cell in the same row but in column A. Since none of the relative cell references are
transitive, we can easily spawn a task for each cell in the cell array, and because a
T is only executed when all its inputs are ready, all its dependencies will already
have been computed. In fig. 5b, the cell reference refers transitively to a cell five
rows below it. Tasks would not properly synchronize if spawned for each cell in
the cell array, but we can still parallelize some of the work by subdividing the cell
array into subgroups of five so that each subgroup will not have any transitive
references to themselves [5]. We then execute each subdivision in parallel in a
lockstep fashion. Therefore, we must first perform an analysis of all cell arrays to
determine if and how they can be executed in parallel. An analysis is provided
in [5]. We do not currently parallelize transitive cell arrays.

A B A B
1|1 |=R[+0]C[-1]/7 1|...|=R[+6]C[+0]/7
2|2 |=R[+0]1C[-11/7 2|...|=R[+51C[+01/7
3|3 |=R[+0]C[-11/7 3|...|=R[+5]C[+01/7
(a) Intransitive cell array. (b) Transitive cell array.

Fig.5: An intransitive cell array that can be executed in parallel and a transitive
cell array that can be executed in a lockstep fashion.

7.2 Puncalc: A Parallel Interpreter for Spreadsheets

Unlike nested cell array parallelism, using our parallel spreadsheet interpreter
does not require an additional analysis of cell arrays since the algorithm already
ensures proper synchronization [4]. The interpreter follows the support graph in
parallel in search of cells to compute, but this would mean that cells belonging
to successor 7’s might be evaluated prematurely. To avoid this, we disallow the
interpreter from following support edges.

7.3 Rewriting Cell Arrays To Higher-Order Function Calls

Biermann et al. [5] analysed each cell array and rewrote eligible ones to an
array formula consisting of a call to a higher-order, compiled function based on
patterns exhibited by the cell array’s formulae. Higher-order, compiled functions
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are a feature of Funcalc [18]. Users can define functions in cells which are then
compiled to .NET bytecode. These are referred to as sheet-defined functions.
Based on the cell array analysis, an expression might be rewritten to a map or
prefix operation or not rewritten at all. This has led to good speed-ups, even
with no parallelization and even for spreadsheets that contain little computation
such as some from the EUSES corpus [11]. The spreadsheet is rewritten after
being loaded from disk, so no change to the static partitioning algorithm is
necessary since we already handle array formulas.

8 Results

8.1 Experimental Setup

We used the spreadsheets from the LibreOffice Calc benchmark suite?, adapted
to run in Funcalc, to evaluate our algorithm. We did not use any of the EU-
SES [11] or Enron [13] corpora since they contain very little computation in
general and we do not expect significant speed-ups for these spreadsheets. We
partitioned all spreadsheets for each core configuration since the partitioning
algorithm is dependent on the number of available cores (see equation (3) in sec-
tion 6.2).

Our test machine was an Intel Xeon E5-2680 v3 with 24 physical 2.5 GHz
cores and hyperthreading (48 logical cores total), running 64-bit Windows 10 and
.NET 4.7.1. We initially performed three warm-up runs and ran each benchmark
for two iterations. For each iteration, we ran the benchmark ten times, for a total
of 20 runs, and computed the average execution time®. We report the average
of those two averages in table 2. We disabled the TPL’s heuristics for thread
creation and destruction so that a thread was created per processor at start-up.

Spreadsheet Cell Arrays % of Formulas in Cell Arrays Rewritten Cell Arrays
building-design 6 99.93% 6/0
energy-markets 76 99.99% 76/0
grossprofit 9 99.94% 9/0
ground-water 12 100% 12/0
stock-history 22 99.97% 20/0
stocks-price 8 99.99% 8/0

Table 1: The number of cell arrays in the LibreOffice Calc spreadsheets; the per-
centage of the spreadsheet’s formulas in cell arrays; and the number of rewritten
intransitive and transitive cell arrays. No transitive cell arrays are rewritten since
none of the spreadsheets contain any.

2 Available at https://gerrit.libreoffice.org/gitweb?p=benchmark.git;a=tree
3 Raw data available at https://github.com/popular-parallel-programming/p3-
results/tree/master/static-partitioning
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Spreadsheet Sequential x2 x4 x8 x16 x32 x48 Speed-up
Base Implementation
building-design 32.12 30.72 30.92 31.26 31.05 30.85 31.79 1.01x
energy-markets 168.16 157.08 95.75 66.51 52.95 75.45 139.41 1.21x
grossprofit 102.19 102.33 53.86 33.25 32.59 32.73 34.66 2.95x
ground-water 81.26 72.42 36.13 24.49 17.65 21.02 17.30 4.70x
stock-history 64.90 61.90 35.54 19.12 17.20 18.69 17.64 3.68x
stocks-price 102.74 158.94 171.10 169.56 174.53 168.10 172.34 0.60x
Nested Cell Array Parallelism Extension (section 7.1)
building-design 32.12 26.23 13.32 7.33 3.98 2.16 1.62 19.84x
energy-markets 168.16 156.68 95.84 66.67 53.22 89.35 200.28 0.84x
grossprofit 102.19 102.72 53.31 32.46 21.06 17.16 19.95 5.12x
ground-water 81.26 69.97 35.59 19.29 10.41 5.32 3.71 21.89x
stock-history 64.90 58.84 29.94 17.73 10.47 7.00 6.17 10.52x
stocks-price 102.74 130.46 166.70 164.37 74.44 145.48 166.87 0.62x
Puncalc Extension (section 7.2)
building-design 32.12 31.97 16.12 8.86 4.82 2.68 1.91 16.81x
energy-markets 168.16 199.63 146.66 128.06 158.50 90.95 202.04 0.83x
grossprofit 102.19 106.70 55.22 33.48 21.57 17.55 20.25 5.05x
ground-water 81.26 80.47 41.22 22.81 12.17 6.26  4.31 18.87x
stock-history 64.90 59.05 29.97 17.81 10.92 7.12 7.03 9.24x
stocks-price 102.74 148.56 174.75 168.01 65.26 143.08 168.25 0.61x
Cell Rewriting Extension (section 7.3)
building-design 32.12 45.35 22.79 12.49 6.58 3.35  2.39 13.44x
energy-markets 168.16 206.16 150.10 99.84 91.04 335.60 400.26 0.42x
grossprofit 102.19 109.75 58.79 36.74 26.56 31.98 63.51 1.61x
ground-water 81.26 111.90 57.74 32.07 16.71 8.34  5.79 14.03x
stock-history 64.90 51.81 26.94 14.31 7.37 3.91 2.72 23.88x
stocks-price 102.74 149.98 91.09 66.45 62.60 205.99 239.11 0.43x

Table 2: Absolute running times in seconds for each configuration of cores for the
base implementation and its three extensions. Speed-up is for parallel execution
on 48 cores relative to normal sequential execution of Funcalc. Bold numbers de-
note the fastest execution for each spreadsheet. The standard deviation is within
+0.08 for all results, except for the base implementation running stocks-price
on 16 cores with a standard deviation of +0.18.

8.2 Discussion

Partitioning currently takes on the order of a few minutes where the dominating
factor is applying the big-step cost rules for each cell. We plan to rectify this in
the future by caching and reusing computed costs. It is also possible to save the
partition alongside the spreadsheet data so that it can be loaded quickly next
time without having to partition again. There are five key observations to be
made from tables 1 and 2.

Observation 1 The benchmark spreadsheets contain large cell arrays that con-
tain almost all formula cells.

Table 1 shows that all our benchmark spreadsheets are dominated by large cell
arrays which contain almost all formula cells. This aligns with the observations
made by Dou et al. [9] that cell arrays are common structures in spreadsheets.
This has two implications. First, the preprocessing step successfully analyses
many of these cell arrays. Second, the many large, intransitive cell arrays means
that there is a lot of computation we can exploit with the three proposed exten-
sions from section 7.
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Observation 2 The performance of the base implementation shows that it is
necessary to exploit the internal parallelism of cell arrays.

In table 2, we get varying results for the base implementation but do get some
speed-up, especially for the grossprofit, ground-water and stock-history
spreadsheets. However, it is evident that we must also exploit the additional
parallelism exposed by cell arrays when comparing results with the three exten-
sions.

Observation 3 The nested cell array extension produces the best overall speed-
ups on 48 cores.

Out of the three extensions, the nested cell array parallelism (section 7.1) gives
the overall best speed-ups on 48 cores with a maximum speed-up of 21.89 for
the ground-water spreadsheet.

Observation 4 The energy-markets and stocks-price spreadsheets have less
predictable speed-ups and peak performance consistently occurs at 16 or 32
cores. Adding more cores slows down recalculation.

Observation 4 is true for the base implementation and its three extensions with
the exception of stocks-price for the base implementation. It is especially
perplexing for energy-markets since it contains ample parallelism which is cap-
tured by partitioning. Likewise, stocks-price also contains some degree of par-
allelism, albeit less. The slowdown may stem from TPL scheduling or hardware.
Our test machine has 2 separate chips of 12 physical cores each which may result
in off-chip communication for a large amount of threads.

However, we get approximately between 1.3-3.0x speed-up for 16 and 32 cores
for both these spreadsheets which may be consistent with the above hardware
observation since using more threads may increase off-chip communication. The
upside is that most modern hardware can run between 8 and 16 concurrent
threads with hyperthreading for which we get positive overall speed-ups.

Observation 5 The cell rewriting extension achieves different speed-ups com-
pared to the other extensions for some spreadsheets.

Table 1 shows that all intransitive cell arrays are rewritten except for the stock-
history spreadsheet where 2 cell arrays are not rewritten. No transitive cell
arrays exist in any of the spreadsheets. The results are quite different from
the other two extensions. The energy-markets and stocks-price spreadsheets
have even worse performance on 48 cores but their peak performance at 16 and
32 cores is comparable to the peak performances of the other two extensions. For
the ground-water spreadsheet, we observe 14.03x speed-up as opposed to 21.89x
and 18.87x for extension 1 and 2 respectively. On the other hand, we see that the
best speed-up out of all the results is 23.88 for 48 cores for the stock-history
spreadsheet which has around a 10-fold speed-up for the other two extensions. It
is unclear why we observe these results but one explanation might be that more
efficient sheet-defined functions are generated for the stock-history spread-
sheet.
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9 Conclusion

We have presented a novel static partitioning algorithm for spreadsheets that
can automatically identify sufficient parallelism and achieve good speed-ups on
a set of benchmark spreadsheets. The partitioning algorithm is based on a big-
step cost semantics for the formula language of Funcalc. We have proposed three
extensions to the algorithm that further accelerate computation.

While cell arrays are common structures in spreadsheets, they may not uni-
versally be so. We do not benchmark on spreadsheets that contain few or no
cell arrays where it should be expected that the partitioning time and speed-up
will be affected. In future work, we intend to find large spreadsheets with these
characteristics and run the partitioning algorithm on them. Likewise, we should
find or construct spreadsheets with large, transitive cell arrays as well.

It may not always be best to use the full capabilities of the hardware for all
spreadsheets as showcased by the energy-markets and stocks-price spread-
sheets. It would be interesting to see if we can use the cost model to capture this
information and to control the amount of parallelism if we suspect that execution
may suffer if we use too many threads. It may also suffice to re-enable TPL’s
heuristics for thread creation, or instead opt for manual thread-based scheduling
to see if the internal scheduling algorithm of TPL is the cause of the slowdowns.

Lastly, we are working on an abstract interpreter for assigning the costs of
our big-step cost semantics from section 5. The interpreter should provide better
cost estimates for branching constructs such as =IF(1, "yes", "no") where we
do not always know which branch will ultimately be taken, and will also include
a closure analysis for more precise costs of function applications.
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