26 research outputs found

    Convergence towards linear combinations of chi-squared random variables: a Malliavin-based approach

    Get PDF
    We investigate the problem of finding necessary and sufficient conditions for convergence in distribution towards a general finite linear combination of independent chi-squared random variables, within the framework of random objects living on a fixed Gaussian space. Using a recent representation of cumulants in terms of the Malliavin calculus operators Γi\Gamma_i (introduced by Nourdin and Peccati in \cite{n-pe-3}), we provide conditions that apply to random variables living in a finite sum of Wiener chaoses. As an important by-product of our analysis, we shall derive a new proof and a new interpretation of a recent finding by Nourdin and Poly \cite{n-po-1}, concerning the limiting behaviour of random variables living in a Wiener chaos of order two. Our analysis contributes to a fertile line of research, that originates from questions raised by Marc Yor, in the framework of limit theorems for non-linear functionals of Brownian local times

    Fluctuation limits of strongly degenerate branching systems

    Full text link
    Functional limit theorems for scaled fluctuations of occupation time processes of a sequence of critical branching particle systems in Rd\R^d with anisotropic space motions and strongly degenerated splitting abilities are proved in the cases of critical and intermediate dimensions. The results show that the limit processes are constant measure-valued Wienner processes with degenerated temporal and simple spatial structures.Comment: 15 page

    Lectures on Gaussian approximations with Malliavin calculus

    Get PDF
    In a seminal paper of 2005, Nualart and Peccati discovered a surprising central limit theorem (called the "Fourth Moment Theorem" in the sequel) for sequences of multiple stochastic integrals of a fixed order: in this context, convergence in distribution to the standard normal law is equivalent to convergence of just the fourth moment. Shortly afterwards, Peccati and Tudor gave a multidimensional version of this characterization. Since the publication of these two beautiful papers, many improvements and developments on this theme have been considered. Among them is the work by Nualart and Ortiz-Latorre, giving a new proof only based on Malliavin calculus and the use of integration by parts on Wiener space. A second step is my joint paper "Stein's method on Wiener chaos" (written in collaboration with Peccati) in which, by bringing together Stein's method with Malliavin calculus, we have been able (among other things) to associate quantitative bounds to the Fourth Moment Theorem. It turns out that Stein's method and Malliavin calculus fit together admirably well. Their interaction has led to some remarkable new results involving central and non-central limit theorems for functionals of infinite-dimensional Gaussian fields. The current survey aims to introduce the main features of this recent theory. It originates from a series of lectures I delivered at the Coll\`ege de France between January and March 2012, within the framework of the annual prize of the Fondation des Sciences Math\'ematiques de Paris. It may be seen as a teaser for the book "Normal Approximations Using Malliavin Calculus: from Stein's Method to Universality" (jointly written with Peccati), in which the interested reader will find much more than in this short survey.Comment: 72 pages. To be published in the S\'eminaire de Probabilit\'es. Mild update: typos, referee comment

    Anisotropy of Hölder Gaussian random fields: characterization, estimation, and application to image textures

    No full text
    International audienceThe characterization and estimation of the Hölder regularity of random fields has long been an important topic of Probability theory and Statistics. This notion of regularity has also been widely used in Image Analysis to measure the roughness of textures. However, such a measure is often not sufficient to characterize textures as it does account for their directional properties (e.g. isotropy and anisotropy). In this paper, we present an approach to further characterize directional properties associated to the Holder regularity of random fields. Using the spectral density, we define a notion of asymptotic topothesy which quantifies directional contributions of field high-frequencies to the Holder regularity. This notion is related to the topothesy function of the so-called anisotropic fractional Brownian fields, but is defined in a more generic framework of intrinsic random fields. We then propose a method based on multi-oriented quadratic variations to estimate this asymptotic topothesy. Eventually, we evaluate this method on synthetic data and apply it for the characterization of historical photographic papers
    corecore