26 research outputs found
Convergence towards linear combinations of chi-squared random variables: a Malliavin-based approach
We investigate the problem of finding necessary and sufficient conditions for
convergence in distribution towards a general finite linear combination of
independent chi-squared random variables, within the framework of random
objects living on a fixed Gaussian space. Using a recent representation of
cumulants in terms of the Malliavin calculus operators (introduced
by Nourdin and Peccati in \cite{n-pe-3}), we provide conditions that apply to
random variables living in a finite sum of Wiener chaoses. As an important
by-product of our analysis, we shall derive a new proof and a new
interpretation of a recent finding by Nourdin and Poly \cite{n-po-1},
concerning the limiting behaviour of random variables living in a Wiener chaos
of order two. Our analysis contributes to a fertile line of research, that
originates from questions raised by Marc Yor, in the framework of limit
theorems for non-linear functionals of Brownian local times
Fluctuation limits of strongly degenerate branching systems
Functional limit theorems for scaled fluctuations of occupation time
processes of a sequence of critical branching particle systems in with
anisotropic space motions and strongly degenerated splitting abilities are
proved in the cases of critical and intermediate dimensions. The results show
that the limit processes are constant measure-valued Wienner processes with
degenerated temporal and simple spatial structures.Comment: 15 page
Lectures on Gaussian approximations with Malliavin calculus
In a seminal paper of 2005, Nualart and Peccati discovered a surprising
central limit theorem (called the "Fourth Moment Theorem" in the sequel) for
sequences of multiple stochastic integrals of a fixed order: in this context,
convergence in distribution to the standard normal law is equivalent to
convergence of just the fourth moment. Shortly afterwards, Peccati and Tudor
gave a multidimensional version of this characterization. Since the publication
of these two beautiful papers, many improvements and developments on this theme
have been considered. Among them is the work by Nualart and Ortiz-Latorre,
giving a new proof only based on Malliavin calculus and the use of integration
by parts on Wiener space. A second step is my joint paper "Stein's method on
Wiener chaos" (written in collaboration with Peccati) in which, by bringing
together Stein's method with Malliavin calculus, we have been able (among other
things) to associate quantitative bounds to the Fourth Moment Theorem. It turns
out that Stein's method and Malliavin calculus fit together admirably well.
Their interaction has led to some remarkable new results involving central and
non-central limit theorems for functionals of infinite-dimensional Gaussian
fields. The current survey aims to introduce the main features of this recent
theory. It originates from a series of lectures I delivered at the Coll\`ege de
France between January and March 2012, within the framework of the annual prize
of the Fondation des Sciences Math\'ematiques de Paris. It may be seen as a
teaser for the book "Normal Approximations Using Malliavin Calculus: from
Stein's Method to Universality" (jointly written with Peccati), in which the
interested reader will find much more than in this short survey.Comment: 72 pages. To be published in the S\'eminaire de Probabilit\'es. Mild
update: typos, referee comment
Anisotropy of Hölder Gaussian random fields: characterization, estimation, and application to image textures
International audienceThe characterization and estimation of the Hölder regularity of random fields has long been an important topic of Probability theory and Statistics. This notion of regularity has also been widely used in Image Analysis to measure the roughness of textures. However, such a measure is often not sufficient to characterize textures as it does account for their directional properties (e.g. isotropy and anisotropy). In this paper, we present an approach to further characterize directional properties associated to the Holder regularity of random fields. Using the spectral density, we define a notion of asymptotic topothesy which quantifies directional contributions of field high-frequencies to the Holder regularity. This notion is related to the topothesy function of the so-called anisotropic fractional Brownian fields, but is defined in a more generic framework of intrinsic random fields. We then propose a method based on multi-oriented quadratic variations to estimate this asymptotic topothesy. Eventually, we evaluate this method on synthetic data and apply it for the characterization of historical photographic papers