6 research outputs found

    Chemically monoubiquitinated PEX5 binds to the components of the peroxisomal docking and export machinery

    Get PDF
    Peroxisomal matrix proteins contain either a peroxisomal targeting sequence 1 (PTS1) or a PTS2 that are recognized by the import receptors PEX5 and PEX7, respectively. PEX5 transports the PTS1 proteins and the PEX7/PTS2 complex to the docking translocation module (DTM) at the peroxisomal membrane. After cargo release PEX5 is monoubiquitinated and extracted from the peroxisomal membrane by the receptor export machinery (REM) comprising PEX26 and the AAA ATPases PEX1 and PEX6. Here, we investigated the protein interactions of monoubiquitinated PEX5 with the docking proteins PEX13, PEX14 and the REM. “Click” chemistry was used to synthesise monoubiquitinated recombinant PEX5. We found that monoubiquitinated PEX5 binds the PEX7/PTS2 complex and restores PTS2 protein import in vivo in ¿PEX5 fibroblasts. In vitro pull-down assays revealed an interaction of recombinant PEX5 and monoubiquitinated PEX5 with PEX13, PEX14 and with the REM components PEX1, PEX6 and PEX26. The interactions with the docking proteins were independent of the PEX5 ubiquitination status whereas the interactions with the REM components were increased when PEX5 is ubiquitinated.We are grateful to Stephen J. Gould (Johns Hopkins University, Baltimore), Nancy E. Braverman (McGill University, Montreal), Wolfgang Schliebs (Ruhr University, Bochum) and Daniel Passon (EMBL, Hamburg) for providing plasmids and antibodies. Work in J.E.A. lab is funded by FEDER (Fundo Europeu de Desenvolvimento Regional), through COMPETE 2020 – Operacional Programme for Competitiveness and Internationalization (POCI), Portugal 2020, and by Portuguese funds through Fundação para a Ciência e Tecnologia (FCT)/Ministério da Ciência, Tecnologia e Inovação in the framework of the projects “Institute for Research and Innovation in Health Sciences” (POCI-01-0145-FEDER-007274) and “The molecular mechanisms of peroxisome biogenesis” (PTDC/BEXBCM/2311/2014), and through Norte 2020 – Programa Operacional Regional do Norte, under the application of the “Porto Neurosciences and Neurologic Disease Research Initiative at i3S” (NORTE-01-0145-FEDER-000008). We acknowledge support by the Open Access Publishing Fund of the University of Tübingen and the Deutsche Forschungsgemeinschaft for publishing costs

    Chemically monoubiquitinated PEX5 binds to the components of the peroxisomal docking and export machinery

    No full text
    Peroxisomal matrix proteins contain either a peroxisomal targeting sequence 1 (PTS1) or a PTS2 that are recognized by the import receptors PEX5 and PEX7, respectively. PEX5 transports the PTS1 proteins and the PEX7/PTS2 complex to the docking translocation module (DTM) at the peroxisomal membrane. After cargo release PEX5 is monoubiquitinated and extracted from the peroxisomal membrane by the receptor export machinery (REM) comprising PEX26 and the AAA ATPases PEX1 and PEX6. Here, we investigated the protein interactions of monoubiquitinated PEX5 with the docking proteins PEX13, PEX14 and the REM. “Click” chemistry was used to synthesise monoubiquitinated recombinant PEX5. We found that monoubiquitinated PEX5 binds the PEX7/PTS2 complex and restores PTS2 protein import in vivo in ¿PEX5 fibroblasts. In vitro pull-down assays revealed an interaction of recombinant PEX5 and monoubiquitinated PEX5 with PEX13, PEX14 and with the REM components PEX1, PEX6 and PEX26. The interactions with the docking proteins were independent of the PEX5 ubiquitination status whereas the interactions with the REM components were increased when PEX5 is ubiquitinated.We are grateful to Stephen J. Gould (Johns Hopkins University, Baltimore), Nancy E. Braverman (McGill University, Montreal), Wolfgang Schliebs (Ruhr University, Bochum) and Daniel Passon (EMBL, Hamburg) for providing plasmids and antibodies. Work in J.E.A. lab is funded by FEDER (Fundo Europeu de Desenvolvimento Regional), through COMPETE 2020 – Operacional Programme for Competitiveness and Internationalization (POCI), Portugal 2020, and by Portuguese funds through Fundação para a Ciência e Tecnologia (FCT)/Ministério da Ciência, Tecnologia e Inovação in the framework of the projects “Institute for Research and Innovation in Health Sciences” (POCI-01-0145-FEDER-007274) and “The molecular mechanisms of peroxisome biogenesis” (PTDC/BEXBCM/2311/2014), and through Norte 2020 – Programa Operacional Regional do Norte, under the application of the “Porto Neurosciences and Neurologic Disease Research Initiative at i3S” (NORTE-01-0145-FEDER-000008). We acknowledge support by the Open Access Publishing Fund of the University of Tübingen and the Deutsche Forschungsgemeinschaft for publishing costs

    DRP1 interacts directly with BAX to induce its activation and apoptosis

    No full text
    The apoptotic executioner protein BAX and the dynamin-like protein DRP1 co-localize at mitochondria during apoptosis to mediate mitochondrial permeabilization and fragmentation. However, the molecular basis and functional consequences of this interplay remain unknown. Here, we show that BAX and DRP1 physically interact, and that this interaction is enhanced during apoptosis. Complex formation between BAX and DRP1 occurs exclusively in the membrane environment and requires the BAX N-terminal region, but also involves several other BAX surfaces. Furthermore, the association between BAX and DRP1 enhances the membrane activity of both proteins. Forced dimerization of BAX and DRP1 triggers their activation and translocation to mitochondria, where they induce mitochondrial remodeling and permeabilization to cause apoptosis even in the absence of apoptotic triggers. Based on this, we propose that DRP1 can promote apoptosis by acting as noncanonical direct activator of BAX through physical contacts with its N-terminal region
    corecore