2 research outputs found

    Trapped-ion probing of light-induced charging effects on dielectrics

    Full text link
    We use a string of confined 40^{40}Ca+^+ ions to measure perturbations to a trapping potential which are caused by light-induced charging of an anti-reflection coated window and of insulating patches on the ion-trap electrodes. The electric fields induced at the ions' position are characterised as a function of distance to the dielectric, and as a function of the incident optical power and wavelength. The measurement of the ion-string position is sensitive to as few as 4040 elementary charges per Hz\sqrt{\mathrm{Hz}} on the dielectric at distances of order millimetres, and perturbations are observed for illumination with light of wavelengths as long as 729\,nm. This has important implications for the future of miniaturised ion-trap experiments, notably with regards to the choice of electrode material, and the optics that must be integrated in the vicinity of the ion. The method presented can be readily applied to the investigation of charging effects beyond the context of ion trap experiments.Comment: 11 pages, 5 figure

    Phase-coherent detection of an optical dipole force by Doppler velocimetry

    Full text link
    We report phase-coherent Doppler detection of optical dipole forces using large ion crystals in a Penning trap. The technique is based on laser Doppler velocimetry using a cycling transition in 9^{9}Be+^{+} near 313 nm and the center-of-mass (COM) ion motional mode. The optical dipole force is tuned to excite the COM mode, and measurements of photon arrival times synchronized with the excitation potential show oscillations with a period commensurate with the COM motional frequency. Experimental results compare well with a quantitative model for a driven harmonic oscillator. This technique permits characterization of motional modes in ion crystals; the measurement of both frequency and phase information relative to the driving force is a key enabling capability -- comparable to lockin detection -- providing access to a parameter that is typically not available in time-averaged measurements. This additional information facilitates discrimination of nearly degenerate motional modes.Comment: Related manuscripts at http://www.physics.usyd.edu.au/~mbiercuk
    corecore