Abstract

We report phase-coherent Doppler detection of optical dipole forces using large ion crystals in a Penning trap. The technique is based on laser Doppler velocimetry using a cycling transition in 9^{9}Be+^{+} near 313 nm and the center-of-mass (COM) ion motional mode. The optical dipole force is tuned to excite the COM mode, and measurements of photon arrival times synchronized with the excitation potential show oscillations with a period commensurate with the COM motional frequency. Experimental results compare well with a quantitative model for a driven harmonic oscillator. This technique permits characterization of motional modes in ion crystals; the measurement of both frequency and phase information relative to the driving force is a key enabling capability -- comparable to lockin detection -- providing access to a parameter that is typically not available in time-averaged measurements. This additional information facilitates discrimination of nearly degenerate motional modes.Comment: Related manuscripts at http://www.physics.usyd.edu.au/~mbiercuk

    Similar works

    Full text

    thumbnail-image

    Available Versions

    Last time updated on 02/01/2020