952 research outputs found

    Three and four current reversals versus temperature in correlation ratchets with a simple sawtooh potential

    Full text link
    Transport of Brownian particles on a simple sawtooth potential subjected to both unbiased thermal and nonequilibrium symmetric three-level Markovian noise is considered. The new effects of three and four current reversals as a function of temperature are established in such correlation ratchets. The parameter space coordinates of the fixed points associated with these current reversals and the necessary and sufficient conditions for the existence of the novel current reversals are found.Comment: 4 pages, 5 figures; some changes introduced; accepted for publication in Physical Review

    Separation quality of a geometric ratchet

    Full text link
    We consider an experimentally relevant model of a geometric ratchet in which particles undergo drift and diffusive motion in a two-dimensional periodic array of obstacles, and which is used for the continuous separation of particles subject to different forces. The macroscopic drift velocity and diffusion tensor are calculated by a Monte-Carlo simulation and by a master-equation approach, using the correponding microscopic quantities and the shape of the obstacles as input. We define a measure of separation quality and investigate its dependence on the applied force and the shape of the obstacles

    Exposure to Leptospira spp. and associated risk factors in the human, cattle and dog populations in Bhutan

    Get PDF
    Leptospirosis is a neglected worldwide zoonotic bacterial disease with a high prevalence in subtropical and tropical countries. The prevalence of Leptospira spp. in humans, cattle and dogs is unknown in Bhutan. Therefore, we sought to find out whether humans, cattle or dogs had been infected in the past with leptospires by measuring antibodies in the serum. We therefore collected blood from 864 humans >/=13 years of age, 130 bovines and 84 dogs from different rural and urban areas in Bhutan and tested the serum for antibodies specific for leptospires with a screening of enzyme-linked immunosorbent assays (ELISA) and a confirmatory microscopic agglutination test (MAT). In humans, 17.6% were seropositive by ELISA and 1.6% by MAT. The seropositivity was stronger in bovines (36.9%) and dogs (47.6%). "Having had a fever recently" (OR 5.2, p = 0.004), "working for the military" (OR 26.6, p = 0.028) and "being unemployed" (OR 12.9, p = 0.041) (reference category = housemaker) were statistically significantly associated with seropositivity when controlled for the effects of other risk factors. However, due to the small number of positive test results, the findings on risk factors should be interpreted with caution. Based on the serogroups found in the three species, dogs could be a source of infection for humans, or dogs and humans are exposed to the same environmental risk factors Clinical leptospirosis in humans and domestic animals should be investigated by testing blood and urine for the presence of leptospires by molecular methods (qPCR)

    Interruption of torus doubling bifurcation and genesis of strange nonchaotic attractors in a quasiperiodically forced map : Mechanisms and their characterizations

    Full text link
    A simple quasiperiodically forced one-dimensional cubic map is shown to exhibit very many types of routes to chaos via strange nonchaotic attractors (SNAs) with reference to a two-parameter (Af)(A-f) space. The routes include transitions to chaos via SNAs from both one frequency torus and period doubled torus. In the former case, we identify the fractalization and type I intermittency routes. In the latter case, we point out that atleast four distinct routes through which the truncation of torus doubling bifurcation and the birth of SNAs take place in this model. In particular, the formation of SNAs through Heagy-Hammel, fractalization and type--III intermittent mechanisms are described. In addition, it has been found that in this system there are some regions in the parameter space where a novel dynamics involving a sudden expansion of the attractor which tames the growth of period-doubling bifurcation takes place, giving birth to SNA. The SNAs created through different mechanisms are characterized by the behaviour of the Lyapunov exponents and their variance, by the estimation of phase sensitivity exponent as well as through the distribution of finite-time Lyapunov exponents.Comment: 27 pages, RevTeX 4, 16 EPS figures. Phys. Rev. E (2001) to appea

    Active Brownian Motion Models and Applications to Ratchets

    Full text link
    We give an overview over recent studies on the model of Active Brownian Motion (ABM) coupled to reservoirs providing free energy which may be converted into kinetic energy of motion. First, we present an introduction to a general concept of active Brownian particles which are capable to take up energy from the source and transform part of it in order to perform various activities. In the second part of our presentation we consider applications of ABM to ratchet systems with different forms of differentiable potentials. Both analytical and numerical evaluations are discussed for three cases of sinusoidal, staircase-like and Mateos ratchet potentials, also with the additional loads modeled by tilted potential structure. In addition, stochastic character of the kinetics is investigated by considering perturbation by Gaussian white noise which is shown to be responsible for driving the directionality of the asymptotic flux in the ratchet. This \textit{stochastically driven directionality} effect is visualized as a strong nonmonotonic dependence of the statistics of the right versus left trajectories of motion leading to a net current of particles. Possible applications of the ratchet systems to molecular motors are also briefly discussedComment: 12 pages, 17 figure

    Irreversible and reversible modes of operation of deterministic ratchets

    Full text link
    We discuss a problem of optimization of the energetic efficiency of a simple rocked ratchet. We concentrate on a low-temperature case in which the particle's motion in a ratchet potential is deterministic. We show that the energetic efficiency of a ratchet working adiabatically is bounded from above by a value depending on the form of ratchet potential. The ratchets with strongly asymmetric potentials can achieve ideal efficiency of unity without approaching reversibility. On the other hand we show that for any form of the ratchet potential a set of time-protocols of the outer force exist under which the operation is reversible and the ideal value of efficiency is also achieved. The mode of operation of the ratchet is still quasistatic but not adiabatic. The high values of efficiency can be preserved even under elevated temperatures

    Contrail formation on ambient aerosol particles for aircraft with hydrogen combustion: a box model trajectory study

    Get PDF
    Future air traffic using (green) hydrogen (H2) promises zero carbon emissions, but the effects of contrails from this new technology have hardly been investigated. We study contrail formation behind aircraft with H2 combustion by means of the particle-based Lagrangian Cloud Module (LCM) box model. Assuming the absence of soot and ultrafine volatile particle formation, contrail ice crystals form solely on atmospheric background particles mixed into the plume. While a recent study extended the original LCM with regard to the contrail formation on soot particles, we further advance the LCM to cover the contrail formation on ambient particles. For each simulation, we perform an ensemble of box model runs using the dilution along 1000 different plume trajectories. The formation threshold temperature of H2 contrails is around 10 K higher than for conventional contrails (which form behind aircraft with kerosene combustion). Then, contrail formation becomes primarily limited by the homogeneous freezing temperature of the water droplets such that contrails can form at temperatures down to around 234 K. The number of ice crystals formed varies strongly with ambient temperature even far away from the contrail formation threshold. The contrail ice crystal number clearly increases with ambient aerosol number concentration and decreases significantly for ambient particles with mean dry radii ⪅ 10 nm due to the Kelvin effect. Besides simulations with one aerosol particle ensemble, we analyze contrail formation scenarios with two co-existing aerosol particle ensembles with different mean dry sizes or hygroscopicity parameters. We compare them to scenarios with a single ensemble that is the average of the two aerosol ensembles. We find that the total ice crystal number can differ significantly between the two cases, in particular if nucleation-mode particles are involved. Due to the absence of soot particle emissions, the ice crystal number in H2 contrails is typically reduced by more than 80 %–90 % compared to conventional contrails. The contrail optical thickness is significantly reduced, and H2 contrails either become visible later than kerosene contrails or are not visible at all for low ambient particle number concentrations. On the other hand, H2 contrails can form at lower flight altitudes where conventional contrails would not form.</p

    DNA transport by a micromachined Brownian ratchet device

    Get PDF
    We have micromachined a silicon-chip device that transports DNA with a Brownian ratchet that rectifies the Brownian motion of microscopic particles. Transport properties for a DNA 50mer agree with theoretical predictions, and the DNA diffusion constant agrees with previous experiments. This type of micromachine could provide a generic pump or separation component for DNA or other charged species as part of a microscale lab-on-a-chip. A device with reduced feature size could produce a size-based separation of DNA molecules, with applications including the detection of single nucleotide polymorphisms.Comment: Latex: 8 pages, 4 figure
    corecore