4 research outputs found

    Exploring a novel class of Janus MXenes by first principles calculations: structural, electronic and magnetic properties of Sc2CXT, X = O, F, OH; T = C, S, N

    Get PDF
    The already intriguing electronic and optical properties of the MXene Sc2C family can be further tuned through a wide range of possible functionalizations. Here, by means of Density Functional Theory, we show that the 36 possible elements of the Janus MXT (M:Sc2C, X:O, F, OH, T:C, N, S) family, built by considering the four possible structural models (i) FCC, (ii) HCP , (iii) FCC + HCP, and (iv) HCP + FCC, are all potentially stable. The analysis of their mechanical properties shows the excellent mechanical flexibility of functionalized MXenes (f-MXenes) under large strain, making them more suitable for applications where stress could be an issue. Interestingly, while Sc2C presents a metallic character, Sc2COS, Sc2CFN and Sc2COHN are found to be semiconductors with bandgaps of 2.5 eV (indirect), 1.67 eV (indirect) and 1.1 eV (direct), respectively, which presents promising applications for nano- and optoelectronics. Moreover, Sc2CFC presents a ferromagnetic ground state with the 2x2x1 supercell magnetic moment of 3.99 mB, while the ground state of Sc2COHC might be antiferromagnetic with a magnetic moment of 3.98 mB, depending on the environment. Remarkably, the band structures of Sc2CFC and Sc2COHC present a half-metallic character with an HSE06 fundamental band gap of 0.60 eV and 0.48 eV, respectively. Our results confirm the extraordinary potential of the Janus MXT (M:Sc2C, X:O, F, OH, T:C, N, S) family for novel applications in 2D nano-,opto- and spintronics.Junta de Andalucia P18-FR-4834AEI PID2021-125604NB-I0

    Simulaciones numéricas en sistemas de baja dimensionalidad: superficies semiconductoras y nanotubos de carbono

    Full text link
    Tesis doctoral inédita leida en la Universidad Autónoma de Madrid, Facultad de Ciencias, Departamento de Física de la Materia Condensada. Fecha de lectura: 20-12-200

    DNA/RNA sequencing using germanene nanoribbons via two dimensional molecular electronic spectroscopy: an ab initio study

    Get PDF
    Developing fast, reliable, and cost effective, yet practical DNA/RNA sequencing methods and devices is a must. In this regard, motivated by the recently introduced two-dimensional electronic molecular spectroscopy (2DMES) technique for molecular recognition, and the compatibility of 2D layers of group IV elements with the current technology of manufacturing electronic devices, we investigate the capability of germanene nanoribbons (GeNRs) as a feasible, accurate, and ultra-fast sequencing device under the application of 2DMES. We show that by employing 2DMES, not only can GeNRs unambiguously distinguish different nucleobases to sequence DNA/RNA, they are also capable of recognizing methylated nucleobases that could be related to cancerous cell growth. Our calculations indicate that, compared to frequently used graphene layers, germanene provides more distinct adsorption energies for different nucleobases which implies its better ability to recognize various molecules unambiguously. By calculating the conductance sensitivity of the system for experimental purposes, we also show that the introduced sequencing device possesses a high sensitivity and selectivity characteristic. Thus, our proposed system would be a promising device for next-generation DNA sequencing technologies and would be realizable using the current protocols of fabricating electronic devices.H2020 Marie Sklodowska-Curie Actions 841673European Commission MAT2017-88258-RPrograma Operativo FEDER of Andalucia 2014-2020 B-FQM-272-UGR20 AEI MAT2017-88258-
    corecore