788 research outputs found

    DECORAS: detection and characterization of radio-astronomical sources using deep learning

    Get PDF
    We present DECORAS, a deep learning based approach to detect both point and extended sources from Very Long Baseline Interferometry (VLBI) observations. Our approach is based on an encoder-decoder neural network architecture that uses a low number of convolutional layers to provide a scalable solution for source detection. In addition, DECORAS performs source characterization in terms of the position, effective radius and peak brightness of the detected sources. We have trained and tested the network with images that are based on realistic Very Long Baseline Array (VLBA) observations at 20 cm. Also, these images have not gone through any prior de-convolution step and are directly related to the visibility data via a Fourier transform. We find that the source catalog generated by DECORAS has a better overall completeness and purity, when compared to a traditional source detection algorithm. DECORAS is complete at the 7.5σ\sigma level, and has an almost factor of two improvement in reliability at 5.5σ\sigma. We find that DECORAS can recover the position of the detected sources to within 0.61 ±\pm 0.69 mas, and the effective radius and peak surface brightness are recovered to within 20 per cent for 98 and 94 per cent of the sources, respectively. Overall, we find that DECORAS provides a reliable source detection and characterization solution for future wide-field VLBI surveys.Comment: submitted to MNRA

    Particle currents and the distribution of terrace sizes in unstable epitaxial growth

    Full text link
    A solid-on-solid model of epitaxial growth in 1+1 dimensions is investigated in which slope dependent upward and downward particle currents compete on the surface. The microscopic mechanisms which give rise to these currents are the smoothening incorporation of particles upon deposition and an Ehrlich-Schwoebel barrier which hinders inter-layer transport at step edges. We calculate the distribution of terrace sizes and the resulting currents on a stepped surface with a given inclination angle. The cancellation of the competing effects leads to the selection of a stable magic slope. Simulation results are in very good agreement with the theoretical findings.Comment: 4 pages, including 3 figure

    A two step algorithm for learning from unspecific reinforcement

    Get PDF
    We study a simple learning model based on the Hebb rule to cope with "delayed", unspecific reinforcement. In spite of the unspecific nature of the information-feedback, convergence to asymptotically perfect generalization is observed, with a rate depending, however, in a non- universal way on learning parameters. Asymptotic convergence can be as fast as that of Hebbian learning, but may be slower. Moreover, for a certain range of parameter settings, it depends on initial conditions whether the system can reach the regime of asymptotically perfect generalization, or rather approaches a stationary state of poor generalization.Comment: 13 pages LaTeX, 4 figures, note on biologically motivated stochastic variant of the algorithm adde

    A machine learning based approach to gravitational lens identification with the International LOFAR Telescope

    Get PDF
    We present a novel machine learning based approach for detecting galaxy-scale gravitational lenses from interferometric data, specifically those taken with the International LOFAR Telescope (ILT), which is observing the northern radio sky at a frequency of 150 MHz, an angular resolution of 350 mas and a sensitivity of 90  µJy beam−1 (1σ). We develop and test several Convolutional Neural Networks to determine the probability and uncertainty of a given sample being classified as a lensed or non-lensed event. By training and testing on a simulated interferometric imaging data set that includes realistic lensed and non-lensed radio sources, we find that it is possible to recover 95.3 per cent of the lensed samples (true positive rate), with a contamination of just 0.008 per cent from non-lensed samples (false positive rate). Taking the expected lensing probability into account results in a predicted sample purity for lensed events of 92.2 per cent. We find that the network structure is most robust when the maximum image separation between the lensed images is ≥3 times the synthesized beam size, and the lensed images have a total flux density that is equivalent to at least a 20σ (point-source) detection. For the ILT, this corresponds to a lens sample with Einstein radii ≥0.5 arcsec and a radio source population with 150 MHz flux densities ≥2 mJy. By applying these criteria and our lens detection algorithm we expect to discover the vast majority of galaxy-scale gravitational lens systems contained within the LOFAR Two Metre Sky Survey

    Statistical Mechanics of Learning in the Presence of Outliers

    Full text link
    Using methods of statistical mechanics, we analyse the effect of outliers on the supervised learning of a classification problem. The learning strategy aims at selecting informative examples and discarding outliers. We compare two algorithms which perform the selection either in a soft or a hard way. When the fraction of outliers grows large, the estimation errors undergo a first order phase transition.Comment: 24 pages, 7 figures (minor extensions added

    Comment on ``On-Line Gibbs Learning''

    Full text link
    corecore