
 

 

 University of Groningen

Adaptive Matrix Metrics for Attribute Dependence Analysis in Differential High-Throughput
Data
Strickert, M.; Witzel, K.; Keilwagen, J.; Mock, H.-P.; Schneider, P.; Biehl, M.; Villmann, T.

Published in:
Proc. 5th International Workshop on Computational Systems Biology

IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from
it. Please check the document version below.

Document Version
Publisher's PDF, also known as Version of record

Publication date:
2008

Link to publication in University of Groningen/UMCG research database

Citation for published version (APA):
Strickert, M., Witzel, K., Keilwagen, J., Mock, H-P., Schneider, P., Biehl, M., & Villmann, T. (2008). Adaptive
Matrix Metrics for Attribute Dependence Analysis in Differential High-Throughput Data. In Proc. 5th
International Workshop on Computational Systems Biology: WCSB 2008 (Vol. 41, pp. 181-184). (Tampere
International Center for Signal Processing TICSP; Vol. 41). University of Tampere.

Copyright
Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the
author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons).

The publication may also be distributed here under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license.
More information can be found on the University of Groningen website: https://www.rug.nl/library/open-access/self-archiving-pure/taverne-
amendment.

Take-down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the
number of authors shown on this cover page is limited to 10 maximum.

https://research.rug.nl/en/publications/772e4239-59f3-47cd-880e-a702f1d25787


ADAPTIVE MATRIX METRICS FOR ATTRIBUTE DEPENDENCE ANALYSIS IN
DIFFERENTIAL HIGH-THROUGHPUT DATA

M. Strickert1∗, K. Witzel1, J. Keilwagen1, H.-P. Mock1, P. Schneider2, M. Biehl2, and T. Villmann3

1Leibniz Institute of Crop Plant Research Gatersleben, Germany,
2Institute for Math. and Computer Science, University of Groningen, NL,

3Research group Computational Intelligence, University of Leipzig, Germany.
∗Corresponding author email: stricker@ipk-gatersleben.de

ABSTRACT

Data-driven metric adaptation is proposed for proteome
analysis of 2D-gel electrophoretic plots aiming at identi-
fication of stress related proteins in two barley cultivars
with different response towards different salt stress con-
ditions. Gradient descent is applied to the ratio of intra-
and inter-class distance sums to optimize the matrix para-
meters of generalized Mahalanobis distances in order to
separate the several hundred dimensional data of protein
intensities in the transformation space. The resulting ma-
trix contains mutual dependence of spots, explaining dif-
ferential stress reactions and putative protein interactions.
We present interesting results obtained by the new met-
ric learning method that possesses general applicability in
biomedical data analysis.

Keywords: Supervised feature characterization, adaptive
matrix metric, attribute dependence modeling.

1. INTRODUCTION

The identification of gene and protein dependences is an
essential step for the inference of interaction networks from
experimental data. Both network inference and the explo-
ration of the obtained connectivity structure are hot topics
in systems biology [5]. Typical approaches for the auto-
matic reconstruction of network topologies make use of
correlation measures [4], Bayesian inference [9], or infor-
mation theoretic statistics [8] in order to model the mutual
dependence of network nodes. Among different benefi-
cial properties these models also possess some unwanted
properties, ranging from being rather simplistic or suffer-
ing from high computational complexity to requiring addi-
tional assumptions like density estimates. The assessment
of the quality of the inferred networks is usually prob-
lematic. One general reason is that test statistics might
be inappropriate for reflecting biological experience [3].
A more specific problem is the biological probing and
confirmation of the huge number of potential interaction
partners. Alternatively, the promising concept of learning
metrics from the area of machine learning research [6, 13]
can be utilized for network construction by modeling at-
tribute pairs. Data-driven metric adaptation also helps to
reduce the curse of dimensionality occurring during the

analysis of high-throughput data. In our case, protein data
of 2D electrophoretic gels are considered providing inten-
sities of many protein spots measured in a relatively low
number of available experiments. A minimalistic attribute
characterization method is used for rating the influence of
attribute pairs on the spatial arrangement of class-specific
data clouds in vector space, expressed by an adaptive ma-
trix metric, as recently utilized in matrix learning vec-
tor quantization [11]. The method presented here aims
at minimizing within-class differences while maximizing
inter-class distances by rescaling the data space based on
a trained transformation matrix without building an ex-
plicit classification model [12]. Although this aim resem-
bles the one of linear discriminant analysis (LDA) [2], the
transform maintains the original data dimensionality and
is thus not reduced to an a priori low-dimensional LDA
subspace. The new method yields an estimate of a label-
specific inverse covariance matrix and might be consid-
ered as supervised whitening operation. Some concepts
can be related to the threshold gradient descent method [7].

2. METHOD – MATRIX LEARNING

As input q-dimensional row vectors x ∈ R
1×q are as-

sumed to be taken from a set containing n data vectors
{x1, x2, . . . , xn}. The proposed metric adaptation requires
a class-specific label c(k) for each data vector x

k. We de-
fine the main building block of the method, the matrix-
based metric dij

Ω
∈ [0 ;∞) for data vectors x

i and x
j :

dij
Ω

= dΩ(xi, xj) = (xi − x
j) · Λ · (xi − x

j)
T

,

(Λ = Ω · Ω
T

) ∈ R
q×q . (1)

The identity matrix Λ = Ω = I induces the special case
of the squared Euclidean distance; other diagonal matri-
ces yield weighted squared Euclidean distances. Arbitrary
positive-definite matrices Λ lead to very general metrics
that can express rotation and translation which do not af-
fect distances between points, and scaling and shearing
which do affect them. A triangular or symmetric matrix Ω

would be sufficient to express any such configuration by
Eqn. 1. Faster convergence can be observed, though, if the
full matrix is adapted in the matrix optimization scheme



for minimizing the label-specific metric stress criterion:

s(Ω) :=
� n

i=1

� n
j=1

dΩ(xi,xj)·δij
�

n
i=1

�
n
j=1

dΩ(xi,xj)·(1−δij)
= dC

dD

with δij =
{

0 : c(i) �= c (j)
1 : c(i)= c(j)

. (2)

Distances dij
Ω

between all n data vectors x
i and x

j depend
on the adaptive matrix parameters Ω = (Ω kl) k=1. . . q

l=1. . . m

of
interest. The numerator represents within-class data vari-
ability, which should be small. The denominator is related
to inter-class distances, which should be large. Thus, op-
timization of s(Ω) handles both parts of the fraction si-
multaneously. Compromise solutions must be found in
cases when within-class variation, potentially caused by
outliers, needs compression, while inter-class separability
would require inflation.

Although similar at first glance, the proposed approach
is structurally different to LDA, because the inverse LDA-
like ratio in Eqn. 2 is optimized in the original data space,
not in the projection to the most prominent class separat-
ing LDA direction [12]. In contrast to LDA where co-
variance matrices and class centers can be initially com-
puted and then reused, this is not possible in the proposed
method, because the metric adaptation affects both class
centers and data covariances. Full matrix adaptation, though,
creates higher computational demands of the optimization
method described in the following.

The cost function s(Ω) gets iteratively minimized by
gradient descent. This requires adaptation of the matrix Ω

in small steps γ into the direction of steepest gradient

Ω← Ω− γ ·
∂s(Ω)

∂Ω
(3)

obtained by the chain rule

∂s(Ω)

∂Ω
=

n
∑

i= 1

n
∑

j= 1

∂s(Ω)

∂dij
Ω

·
∂dij

Ω

∂Ω
. (4)

The derivative of the fraction s(Ω) = dC/dD in Eqn. 2 is

∂s(Ω)

∂dij
Ω

=
δij · dD

d2
D

+
(δij − 1) · dC

d2
D

=

{

1/dD : c(i) = c(j)

−dC/d2
D : c(i) �= c(j)

. (5)

The right factor in Eqn. 4 is the matrix derivative of Eqn. 1:

∂dij
Ω

∂Ω
= 2 · (xi − x

j)
T

· (xi − x
j) ·Ω . (6)

In practice, the gradient from Eqn. 4, is computed and
reused as long the cost function decreases. Increase of
s(Ω) triggers a recomputation of the gradient. The step
size γ is dynamically determined as the initial size γ0, be-
ing exponentially cooled down by rate η, divided by the
maximum absolute element in the matrix ∂s(Ω)/∂Ω.

For running the iterative optimization, the initial step
size γ0 can be chosen as a value below one, such as 0.01

used here. In general, between 50 and 2500 iterations are
necessary, depending on the saturation characteristics of
the logged cost function value. It was set to 50 in this
study. The exponential cooling rate was set to η = 0.9 9 5 .
For initialization of matrix Ω random matrix element sam-
pling from uniform noise in the interval [−0.5 ; 0.5 ] is pro-
posed as first step. This noise matrix A ∈ R

q×q is then
broken by QR-decomposition into A = Q ·R, of which
the Q-part is known to form an orthonormal basis with
Q·QT = I . Thus, although Ω = Q contains random con-
figurations, its self-product leads to the intuitive squared
Euclidean distance in the beginning of optimization.

3. RESULTS – PROTEOME DATA ANALYSIS

Abiotic stress factors have severe effects on the growth as
well as on the yield of crop plants, and proteome analysis
of stress responses is widely used for unraveling tolerance
mechanisms for crop improvement [1, 10]. Our data has
been created in a proteomic study concerning metabolic
reactions of two barley cultivars, Steptoe and Morex, to
different salt stress conditions, ranging from zero NaCl
concentration via 100mM to 150mM. The main task is the
identification of protein pairs in root parts affected by salt
stress, but with different regulation dynamics between the
salt-sensitive Steptoe line and the salt-tolerant Morex line.
Using 2D-gels separating along pH and mass gradient,
images with protein-specific spot distributions were ob-
tained. After image processing, a number of 997 common
spots in all gel images was obtained for further analysis.
Since three technical replicates per experimental condi-
tion were taken, a total number of 18 images was available
for differential analysis of the spot combinations charac-
teristic of the three salt treatments.

Matrix learning has been done independently for the
Morex and Steptoe lines. In order to increase the reli-
ability of the results, 100 repetitions with random matrix
initializations have been created, leading to a total number
of 200 trained 997x997 matrices Λi = Ωi · Ω

T

i . Within
each such symmetric matrix the ranks of its lower trian-
gular elements, including the diagonal, were calculated.
Especially high and low ranks are linked to protein pairs
separating between the three salt stress conditions. Since
metabolic differences of Steptoe and Morex regarding salt
treatments are looked for, only those pairs with very dif-
ferent ranks between both lines are of interest. Thus, the
absolute differences of average ranks of the 100 Steptoe
and 100 Morex results were taken as ordering criterion of
all protein pairs. For illustration, the top 100 protein pairs
are considered in more detail. In that list all standard de-
viations of ranks are below 12.8, which indicates a high
reproducibility of the found protein pairs; for comparison,
the expectation of randomly drawn rank differences would
be 1/3 · 9 9 7 · (9 9 7 + 1)/2 = 16 5 8 34 .3.

The connectivity structure of the strongly associated
top 100 protein pairs is shown in Fig. 1. Two protein spots,
543 and 94, can be identified as network hubs. These
are linked to many other spots of interest. Spots within
bold ellipses were identified as candidate proteins in an
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Figure 1. Protein-protein network derived from 2D gels containing patterns of differential protein abundance induced by
salt-stress. The top 100 dependent pairs of protein spots, indexed by numbers, are shown. Edge gray levels indicate the
ranking, the darker the stronger. The connection from 543 to 94 is the strongest. Bold face ellipses denote spots identified
as interesting in previous studies, gray filling indicates spots close to the background intensity.

independent previous study. Plain ellipses are new can-
didates that have not been detected previously by single
spot analysis. It must be stated, though, that also spots
close to the background intensity have been found. These,
shaded in gray, cannot be considered as biologically rele-
vant. Yet, scale-free inspection indicates that magnitudes
alone are not the only consistent class-separation criteria.

Model compression. Since the matrix model of 997x997
is huge in contrast to the (2x9) x 997 experimental protein
spots, compression is an important issue. Eigen decom-
position of Λ = S ·W ·W−1 into the diagonal eigen-
value matrix S and the eigenvector matrix W helps to
reach substantial reduction. For the protein-specific ma-
trices the largest eigenvalues are about 7-fold greater than
their predecessors which themselves are twice larger than
their predecessors. These first two eigenvectors w1 and
w2 therefore define outstanding directions in the scaling
matrix Λ. This matrix can be approximately reconstructed
by [w1w2] · [w1w2]

T. Each experiment x is projected into
a class-separating subspace by x · [w1w2]

T. This is shown
in the right panel of Fig. 2, where the within-class vari-
ation of the technical repetitions is virtually completely
suppressed in contrast to the scatter plot obtained by ordi-
nary PCA projection, displayed in the left panel of Fig. 2.
This result indicates that relevant directions for noise can-
cellation have been found by matrix learning.

4. CONCLUSIONS

The presented matrix metric learning approach offers a
new way to extracting biomarkers, advancing the tradi-
tional assessment of individual data attributes to attribute
pairs. As illustrated for protein data, dependent treatment-
specific substances can be identified. This allows the con-
struction of undirected network structures with weight-
ed edges, a first step towards the inspection of possible
protein interactions. Multi-parallel data sources like the
considered protein gels create big challenges, because the
number of experiments are usually substantially lower than
the number of attributes. Therefore, metric adaptation is
generally considered as beneficial to counter-act the curse
of dimensionality. Confidence in the proposed method is
derived from the observation that training showed very
stable results despite random initializations of Ω. How-
ever, additional data for the validation of the trained met-
ric are needed, and attention must be put to the role of
pairs with low-intensity partners. In order to force fur-
ther model regularization and for a significant speedup of
adaptation, the direct training of only the first k eigenvec-
tors of Λ are currently considered.

Thanks to the anonymous reviewer for the valuable com-
ments. The work is supported by grant XP3624HP/0606T,
Ministry of Culture Saxony-Anhalt, Germany.
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Figure 2. Scatter plots of 2D gels of Morex roots under salt stress. Left: PCA projection of original data to second vs. first
eigenvector of data covariance matrix. Right: projection to second vs. first eigenvector of the trained metric matrix Ω ·ΩT.
Labels M:0–M:150 denote salt stress concentrations in mM NaCl. The three technical replicates, belonging to specific
salt levels, constitute a class.
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