162 research outputs found
An ab initio and AIM investigation into the hydration of 2-thioxanthine
<p>Abstract</p> <p>Background</p> <p>Hydration is a universal phenomenon in nature. The interactions between biomolecules and water of hydration play a pivotal role in molecular biology. 2-Thioxanthine (2TX), a thio-modified nucleic acid base, is of significant interest as a DNA inhibitor yet its interactions with hydration water have not been investigated either computationally or experimentally. Here in, we reported an <it>ab initio </it>study of the hydration of 2TX, revealing water can form seven hydrated complexes.</p> <p>Results</p> <p>Hydrogen-bond (H-bond) interactions in 1:1 complexes of 2TX with water are studied at the MP2/6-311G(d, p) and B3LYP/6-311G(d, p) levels. Seven 2TX<sup>...</sup>H<sub>2</sub>O hydrogen bonded complexes have been theoretically identified and reported for the first time. The proton affinities (PAs) of the O, S, and N atoms and deprotonantion enthalpies (DPEs) of different N-H bonds in 2TX are calculated, factors surrounding why the seven complexes have different hydrogen bond energies are discussed. The theoretical infrared and NMR spectra of hydrated 2TX complexes are reported to probe the characteristics of the proposed H-bonds. An improper blue-shifting H-bond with a shortened C-H bond was found in one case. NBO and AIM analysis were carried out to explain the formation of improper blue-shifting H-bonds, and the H-bonding characteristics are discussed.</p> <p>Conclusion</p> <p>2TX can interact with water by five different H-bonding regimes, N-H<sup>...</sup>O, O-H<sup>...</sup>N, O-H<sup>...</sup>O, O-H<sup>...</sup>S and C-H<sup>...</sup>O, all of which are medium strength hydrogen bonds. The most stable H-bond complex has a closed structure with two hydrogen bonds (N(7)-H<sup>...</sup>O and O-H<sup>...</sup>O), whereas the least stable one has an open structure with one H-bond. The interaction energies of the studied complexes are correlated to the PA and DPE involved in H-bond formation. After formation of H-bonds, the calculated IR and NMR spectra of the 2TX-water complexes change greatly, which serves to identify the hydration of 2TX.</p
Nature of the bonding in metal-silane σ-complexes
The nature of metal silane σ-bond interaction has been investigated in several key systems by a range of experimental and computational techniques. The structure of [Cp′Mn(CO)2(η2-HSiHPh2)] 1 has been determined by single crystal neutron diffraction, and the geometry at the Si atom is shown to approximate a trigonal bipyramid; salient bond distances and angles are Mn−H(1) 1.575(14), Si−H(1) 1.806(14), Si−H(2) 1.501(13) Å, and H(1)−Si−H(2) 148.5(8)°. This complex is similar to [Cp′Mn(CO)2(η2-HSiFPh2)] 2, whose structure and bonding characteristics have recently been determined by charge density studies based on high-resolution X-ray and neutron diffraction data. The geometry at the Si atom in these σ-bond complexes is compared with that in other systems containing hypercoordinate silicon. The Mn−H distances for 1 and 2 in solution have been estimated using NMR T1 relaxation measurements, giving a value of 1.56(3) Å in each case, in excellent agreement with the distances deduced from neutron diffraction. Density functional theory calculations have been employed to explore the bonding in the Mn−H−Si unit in 1 and 2 and in the related system [Cp′Mn(CO)2(η2-HSiCl3)] 3. These studies support the idea that the oxidative addition of a silane ligand to a transition metal center may be described as an asymmetric process in which the Mn−H bond is formed at an early stage, while both the establishment of the Mn−Si bond and also the activation of the η2-coordinated Si−H moiety are controlled by the extent of Mn → σ*(X−Si−H) back-donation, which increases with increasing electron-withdrawing character of the X substituent trans to the metal-coordinated Si−H bond. This delocalized molecular orbital (MO) approach is complemented and supported by combined experimental and theoretical charge density studies: the source function S(r,Ω), which provides a measure of the relative importance of each atom’s contribution to the density at a specific reference point r, clearly shows that all three atoms of the Mn(η2-SiH) moiety contribute to a very similar extent to the density at the Mn−Si bond critical point, in pleasing agreement with the MO model. Hence, we advance a consistent and unifying concept which accounts for the degree of Si−H activation in these silane σ-bond complexes
Rigorous characterization of oxygen vacancies in ionic oxides
Charged and neutral oxygen vacancies in the bulk and on perfect and defective surfaces of MgO are characterized as quantum-mechanical subsystems chemically bonded to the host lattice and containing most of the charge left by the removed oxygens. Attractors of the electron density appear inside the vacancy, a necessary condition for the existence of a subsystem according to the atoms in molecules theory. The analysis of the electron localization function also shows attractors at the vacancy sites, which are associated to a localization basin shared with the valence domain of the nearest oxygens. This polyatomic superanion exhibits chemical trends guided by the formal charge and the coordination of the vacancy. The topological approach is shown to be essential to understand and predict the nature and chemical reactivity of these objects. There is not a vacancy but a coreless pseudoanion that behaves as an activated host oxygen
- …