454 research outputs found

    Next-Generation Sequencing Reveals Recent Horizontal Transfer of a DNA Transposon between Divergent Mosquitoes

    Get PDF
    Horizontal transfer of genetic material between complex organisms often involves transposable elements (TEs). For example, a DNA transposon mariner has been shown to undergo horizontal transfer between different orders of insects and between different phyla of animals. Here we report the discovery and characterization of an ITmD37D transposon, MJ1, in Anopheles sinensis. We show that some MJ1 elements in Aedes aegypti and An. sinensis contain intact open reading frames and share nearly 99% nucleotide identity over the entire transposon, which is unexpectedly high given that these two genera had diverged 145–200 million years ago. Chromosomal hybridization and TE-display showed that MJ1 copy number is low in An. sinensis. Among 24 mosquito species surveyed, MJ1 is only found in Ae. aegypti and the hyrcanus group of anopheline mosquitoes to which An. sinensis belongs. Phylogenetic analysis is consistent with horizontal transfer and provides the basis for inference of its timing and direction. Although report of horizontal transfer of DNA transposons between higher eukaryotes is accumulating, our analysis is one of a small number of cases in which horizontal transfer of nearly identical TEs among highly divergent species has been thoroughly investigated and strongly supported. Horizontal transfer involving mosquitoes is of particular interest because there are ongoing investigations of the possibility of spreading pathogen-resistant genes into mosquito populations to control malaria and other infectious diseases. The initial indication of horizontal transfer of MJ1 came from comparisons between a 0.4x coverage An. sinensis 454 sequence database and available TEs in mosquito genomes. Therefore we have shown that it is feasible to use low coverage sequencing to systematically uncover horizontal transfer events. Expanding such efforts across a wide range of species will generate novel insights into the relative frequency of horizontal transfer of different TEs and provide the evolutionary context of these lateral transfer events

    Improved reference genome of the arboviral vector Aedes albopictus

    Get PDF
    Background: The Asian tiger mosquito Aedes albopictus is globally expanding and has become the main vector for human arboviruses in Europe. With limited antiviral drugs and vaccines available, vector control is the primary approach to prevent mosquito-borne diseases. A reliable and accurate DNA sequence of the Ae. albopictus genome is essential to develop new approaches that involve genetic manipulation of mosquitoes. Results: We use long-read sequencing methods and modern scaffolding techniques (PacBio, 10X, and Hi-C) to produce AalbF2, a dramatically improved assembly of the Ae. albopictus genome. AalbF2 reveals widespread viral insertions, novel microRNAs and piRNA clusters, the sex-determining locus, and new immunity genes, and enables genome-wide studies of geographically diverse Ae. albopictus populations and analyses of the developmental and stage-dependent network of expression data. Additionally, we build the first physical map for this species with 75% of the assembled genome anchored to the chromosomes. Conclusion: The AalbF2 genome assembly represents the most up-to-date collective knowledge of the Ae. albopictus genome. These resources represent a foundation to improve understanding of the adaptation potential and the epidemiological relevance of this species and foster the development of innovative control measures

    Comparative genomics of small RNA regulatory pathway components in vector mosquitoes

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Small RNA regulatory pathways (SRRPs) control key aspects of development and anti-viral defense in metazoans. Members of the Argonaute family of catalytic enzymes degrade target RNAs in each of these pathways. SRRPs include the microRNA, small interfering RNA (siRNA) and PIWI-type gene silencing pathways. Mosquitoes generate viral siRNAs when infected with RNA arboviruses. However, in some mosquitoes, arboviruses survive antiviral RNA interference (RNAi) and are transmitted via mosquito bite to a subsequent host. Increased knowledge of these pathways and functional components should increase understanding of the limitations of anti-viral defense in vector mosquitoes. To do this, we compared the genomic structure of SRRP components across three mosquito species and three major small RNA pathways.</p> <p>Results</p> <p>The <it>Ae. aegypti, An. gambiae </it>and <it>Cx. pipiens </it>genomes encode putative orthologs for all major components of the miRNA, siRNA, and piRNA pathways. <it>Ae. aegypti </it>and <it>Cx. pipiens </it>have undergone expansion of Argonaute and PIWI subfamily genes. Phylogenetic analyses were performed for these protein families. In addition, sequence pattern recognition algorithms MEME, MDScan and Weeder were used to identify upstream regulatory motifs for all SRRP components. Statistical analyses confirmed enrichment of species-specific and pathway-specific cis-elements over the rest of the genome.</p> <p>Conclusion</p> <p>Analysis of Argonaute and PIWI subfamily genes suggests that the small regulatory RNA pathways of the major arbovirus vectors, <it>Ae. aegypti and Cx. pipiens</it>, are evolving faster than those of the malaria vector <it>An. gambiae </it>and <it>D. melanogaster</it>. Further, protein and genomic features suggest functional differences between subclasses of PIWI proteins and provide a basis for future analyses. Common UCR elements among SRRP components indicate that 1) key components from the miRNA, siRNA, and piRNA pathways contain NF-kappaB-related and Broad complex transcription factor binding sites, 2) purifying selection has occurred to maintain common pathway-specific elements across mosquito species and 3) species-specific differences in upstream elements suggest that there may be differences in regulatory control among mosquito species. Implications for arbovirus vector competence in mosquitoes are discussed.</p

    New Alzheimer Amyloid β Responsive Genes Identified in Human Neuroblastoma Cells by Hierarchical Clustering

    Get PDF
    Alzheimer's disease (AD) is characterized by neuronal degeneration and cell loss. Aβ42, in contrast to Aβ40, is thought to be the pathogenic form triggering the pathological cascade in AD. In order to unravel overall gene regulation we monitored the transcriptomic responses to increased or decreased Aβ40 and Aβ42 levels, generated and derived from its precursor C99 (C-terminal fragment of APP comprising 99 amino acids) in human neuroblastoma cells. We identified fourteen differentially expressed transcripts by hierarchical clustering and discussed their involvement in AD. These fourteen transcripts were grouped into two main clusters each showing distinct differential expression patterns depending on Aβ40 and Aβ42 levels. Among these transcripts we discovered an unexpected inverse and strong differential expression of neurogenin 2 (NEUROG2) and KIAA0125 in all examined cell clones. C99-overexpression had a similar effect on NEUROG2 and KIAA0125 expression as a decreased Aβ42/Aβ40 ratio. Importantly however, an increased Aβ42/Aβ40 ratio, which is typical of AD, had an inverse expression pattern of NEUROG2 and KIAA0125: An increased Aβ42/Aβ40 ratio up-regulated NEUROG2, but down-regulated KIAA0125, whereas the opposite regulation pattern was observed for a decreased Aβ42/Aβ40 ratio. We discuss the possibilities that the so far uncharacterized KIAA0125 might be a counter player of NEUROG2 and that KIAA0125 could be involved in neurogenesis, due to the involvement of NEUROG2 in developmental neural processes

    Veratridine produces distinct calcium response profiles in mouse Dorsal Root Ganglia neurons.

    Get PDF
    Nociceptors are a subpopulation of dorsal root ganglia (DRG) neurons that detect noxious stimuli and signal pain. Veratridine (VTD) is a voltage-gated sodium channel (VGSC) modifier that is used as an "agonist" in functional screens for VGSC blockers. However, there is very little information on VTD response profiles in DRG neurons and how they relate to neuronal subtypes. Here we characterised VTD-induced calcium responses in cultured mouse DRG neurons. Our data shows that the heterogeneity of VTD responses reflects distinct subpopulations of sensory neurons. About 70% of DRG neurons respond to 30-100 μM VTD. We classified VTD responses into four profiles based upon their response shape. VTD response profiles differed in their frequency of occurrence and correlated with neuronal size. Furthermore, VTD response profiles correlated with responses to the algesic markers capsaicin, AITC and α, β-methylene ATP. Since VTD response profiles integrate the action of several classes of ion channels and exchangers, they could act as functional "reporters" for the constellation of ion channels/exchangers expressed in each sensory neuron. Therefore our findings are relevant to studies and screens using VTD to activate DRG neurons

    SFRS7-Mediated Splicing of Tau Exon 10 Is Directly Regulated by STOX1A in Glial Cells

    Get PDF
    Background: In this study, we performed a genome-wide search for effector genes bound by STOX1A, a winged helix transcription factor recently demonstrated to be involved in late onset Alzheimer’s disease and affecting the amyloid processing pathway. Methodology/Principal Findings: Our results show that out of 218 genes bound by STOX1A as identified by chromatinimmunoprecipitation followed by sequencing (ChIP-Seq), the serine/arginine-rich splicing factor 7 (SFRS7) was found to be induced, both at the mRNA and protein levels, by STOX1A after stable transfection in glial cells. The increase in SFRS7 was followed by an increase in the 4R/3R ratios of the microtubule-associated protein tau (MAPT) by differential exon 10 splicing. Secondly, STOX1A also induced expression of total tau both at the mRNA and protein levels. Upregulation of total tau expression (SFRS7-independent) and tau exon 10 splicing (SFRS7-dependent), as shown in this study to be both affected by STOX1A, is known to have implications in neurodegeneration

    Novel transposable elements from Anopheles gambiae

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Transposable elements (TEs) are DNA sequences, present in the genome of most eukaryotic organisms that hold the key characteristic of being able to mobilize and increase their copy number within chromosomes. These elements are important for eukaryotic genome structure and evolution and lately have been considered as potential drivers for introducing transgenes into pathogen-transmitting insects as a means to control vector-borne diseases. The aim of this work was to catalog the diversity and abundance of TEs within the <it>Anopheles gambiae </it>genome using the PILER tool and to consolidate a database in the form of a hyperlinked spreadsheet containing detailed and readily available information about the TEs present in the genome of <it>An. gambiae</it>.</p> <p>Results</p> <p>Here we present the spreadsheet named AnoTExcel that constitutes a database with detailed information on most of the repetitive elements present in the genome of the mosquito. Despite previous work on this topic, our approach permitted the identification and characterization both of previously described and novel TEs that are further described in detailed.</p> <p>Conclusions</p> <p>Identification and characterization of TEs in a given genome is important as a way to understand the diversity and evolution of the whole set of TEs present in a given species. This work contributes to a better understanding of the landscape of TEs present in the mosquito genome. It also presents a novel platform for the identification, analysis, and characterization of TEs on sequenced genomes.</p
    corecore