1,930 research outputs found
Observation of Free-Space Single-Atom Matterwave Interference
We observe matterwave interference of a single cesium atom in free fall. The
interferometer is an absolute sensor of acceleration and we show that this
technique is sensitive to forces at the level of N with a
spatial resolution at the micron scale. We observe the build up of the
interference pattern one atom at a time in an interferometer where the mean
path separation extends far beyond the coherence length of the atom. Using the
coherence length of the atom wavepacket as a metric, we directly probe the
velocity distribution and measure the temperature of a single atom in free
fall.Comment: 5 pages, 4 figure
Fluorescent artificial receptor-based membrane assay (FARMA) for spatiotemporally resolved monitoring of biomembrane permeability
The spatiotemporally resolved monitoring of membrane translocation, e.g., of drugs or toxins, has been a long-standing goal. Herein, we introduce the fluorescent artificial receptor-based membrane assay (FARMA), a facile, label-free method. With FARMA, the permeation of more than hundred organic compounds (drugs, toxins, pesticides, neurotransmitters, peptides, etc.) through vesicular phospholipid bilayer membranes has been monitored in real time (µs-h time scale) and with high sensitivity (nM-µM concentration), affording permeability coefficients across an exceptionally large range from 10–10 cm s. From a fundamental point of view, FARMA constitutes a powerful tool to assess structure-permeability relationships and to test biophysical models for membrane passage. From an applied perspective, FARMA can be extended to high-throughput screening by adaption of the microplate reader format, to spatial monitoring of membrane permeation by microscopy imaging, and to the compartmentalized monitoring of enzymatic activity
Numerical evaluation of one-loop QCD amplitudes
We present the publicly available program NGluon allowing the numerical
evaluation of primitive amplitudes at one-loop order in massless QCD. The
program allows the computation of one-loop amplitudes for an arbitrary number
of gluons. The focus of the present article is the extension to one-loop
amplitudes including an arbitrary number of massless quark pairs. We discuss in
detail the algorithmic differences to the pure gluonic case and present cross
checks to validate our implementation. The numerical accuracy is investigated
in detail.Comment: Talk given at ACAT 2011 conference in London, 5-9 Septembe
Sensitive gravity-gradiometry with atom interferometry: progress towards an improved determination of the gravitational constant
We here present a high sensitivity gravity-gradiometer based on atom
interferometry. In our apparatus, two clouds of laser-cooled rubidium atoms are
launched in fountain configuration and interrogated by a Raman interferometry
sequence to probe the gradient of gravity field. We recently implemented a
high-flux atomic source and a newly designed Raman lasers system in the
instrument set-up. We discuss the applications towards a precise determination
of the Newtonian gravitational constant G. The long-term stability of the
instrument and the signal-to-noise ratio demonstrated here open interesting
perspectives for pushing the measurement precision below the 100 ppm level
Discussion on how to implement a verbal scale in a forensic laboratory: benefits, pitfalls and suggestions to avoid misunderstandings
In a recently published guideline for evaluative reporting in forensic science, the European Network of Forensic Science Institutes (ENFSI) recommended the use of the likelihood ratio for the measurement of the value of forensic results. As a device to communicate the probative value of the results, the ENFSI guideline mentions the possibility to define and use a verbal scale, which should be unified within a forensic institution. This paper summarizes discussions held between scientists of our institution to develop and implement such a verbal scale. It intends to contribute to general discussions likely to be faced by any forensic institution that engages in continuous monitoring and improving of their evaluation and reporting format. We first present published arguments in favour of the use of such verbal qualifiers. We emphasize that verbal qualifiers do not replace the use of numbers to evaluate forensic findings, but are useful to communicate the probative value, since the weight of evidence in terms of likelihood ratio are still apprehended with difficulty by both the forensic scientists, especially in absence of hard data, and the recipient of information. We further present arguments that support the development of the verbal scale we propose. Recognising the limits of the use of such a verbal scale, we then discuss its disadvantages: it may lead to the spurious view according to which the value of the observations made in a given case is relative to other cases. Verbal qualifiers are also prone to misunderstandings and cannot be coherently combined with other evidence. We therefore recommend not using the verbal qualifier alone in a written statement. While scientists should only report on the probability of the findings - and not on the probability of the propositions, which are the duty of the Court - we suggest showing examples to let the recipient of information understand how the scientific evidence affects the probabilities of the propositions. To avoid misunderstandings, we also advise to mention in the statement what the results do not mean. Finally, we are of the opinion that if experts were able to coherently articulate numbers, and if recipients of information could properly handle such numbers, then verbal qualifiers could be abandoned completely. At that time, numerical expressions of probative value will be appropriately understood, as other numerical measures that most of us understand without the need of any further explanation, such as expressions for length or temperature
- …