16 research outputs found

    Correlation of the Cd-to-Te ratio on CdTe surfaces with the surface structure

    Get PDF
    We report here that reconstruction on (100), (1lIlA, and (1l1lB CdTe surfaces is either C(2X2), (2X2), and (l X I) or (2X I), (l X I), and (l X I) when they are Cd or Te stabilized, respectively. There is a mixed region between Cd and Te stabilization in which the reflected high-energy electron-diffraction (RHEED) patterns contain characteristics of both Cd- and Te-stabilized surfaces. We have also found that the Cd-to-Te ratio of the x-ray photoelectron intensities of their 3d3/2_{3/ 2} core levels is about 20% larger for a Cd-stabilized (1lIlA, (1lIlB, or (100) CdTe surface than for a Te-stabilized one. According to a simple model calculation, which was normalized by means of the photoelectron intensity ratio of a Cd-stabilized (lll)A and aTe-stabilized (1l1lB CdTe surface, the experimental data for CdTe surfaces can be explained by a linear dependence of the photoelectron-intensity ratio on the fraction of Cd in the uppermost monatomic layer. This surface composition can be correlated with the surface structure, i.e., the corresponding RHEED patterns. This correlation can in turn be employed to determine Te and Cd evaporation rates. The Te reevaporation rate is increasingly slower for the Te-stabilized (Ill) A, (l1l)B, and (100) surfaces, while the opposite is true for Cd from Cd-stabilized (Ill) A and (Ill)B surfaces. In addition, Te is much more easily evaporated from all the investigated surfaces than is Cd, if the substrate is kept at normal molecular-beam-epitaxy growth temperatures ranging from 2oo·C to 300 ·C

    Lattice and Energy Band Engineering in AlInGaN/Ga Heterostructures

    Get PDF
    We report on structural, optical, and electrical properties of AlxInyGa1−x−yNGaNheterostructures grown on sapphire and 6H–SiC substrates. Our results demonstrate that incorporation of In reduces the lattice mismatch, Δa, between AlInGaN and GaN, and that an In to Al ratio of close to 1:5 results in nearly strain-free heterostructures. The observed reduction in band gap,ΔEg, determined from photoluminescence measurements, is more than 1.5 times higher than estimated from the linear dependencies of Δa and ΔEg on the In molar fraction. The incorporation of In and resulting changes in the built-in strain in AlInGaN/GaN heterostructures strongly affect the transport properties of the two-dimensional electron gas at the heterointerface. The obtained results demonstrate the potential of strain energy band engineering for GaN-based electronic applications

    Composition and wavelength dependence of the refractive index in Cd1x_{1-x}Mnx_xTe epitaxial layers

    Get PDF
    We have investigated Cd1x_{1-x}Mnx_xTe thin films with Mn concentrations of x=0.12, 0.18, 0.30, 0.52, and 0.70. These single crystal layers were grown by molecular beam epitaxy on [001] CdTe substrates. The real part of the refractive index, n, was determined below the band-gap Eo in the range of 0.5-2.5 eV at T=300 K. The parallel reOectivity was measured near the Brewster angle at the YAG laser wavelength of 1.064 J.Lm (hv= 1.165 eV). Combining these results with the optical pathlength results (nd) of reOection measurements in a Fourier spectrometer we have determined n(x,v) over a wide spectral range by utilizing a three parameter fit. The accuracy of these results for n should improve waveguide designs based on this material

    High magnetic field transport in II-VI heterostructures

    Get PDF
    In the present work we report the results of magneto-transport measurements on some Hg-based li-VI semiconductor epitaxiallayers grown by molecular beam epitaxy. The transport measurement were carried out at temperatures in the range 0.4 - 4.2 K in magnetic fields up to 10.0 T. Further, we point out the necessity of using multicarrier models for data interpretation and show finally some Shubnikov-de-Haas results on sampies with high mobility carners

    Thermal effects on (100) CdZnTe substrates as studied by x-ray photoelectron spectroscopy and reflection high energy electron diffraction

    Get PDF
    The influence of different CdZnTe substrate treatments prior to II-VI molecular beam epitaxial growth on surface stoichiometry, oxygen, and carbon contamination has been studied using x-ray photoelectron spectroscopy and reflection high energy electron diffraction. Heating the substrate at 300 °C can eliminate oxygen contamination, but cannot completely remove carbon from the surface. Heating at higher temperatures decreases the carbon contamination only slightly, while increasing the Zn-Cd ratio on the surface considerably. The magnitude of the latter effect is surprising and is crucial when one is using lattice matched CdZnTe (Zn 4%) substrates

    The effects of laser illumination and high energy electrons on molecular-beam epitaxial growth of CdTe

    Get PDF
    We report the results of a detailed investigation on the Te-stabilized (2 x 1) and the Cdstabilized c( 2 X 2) surfaces of ( 100) CdTe substrates. The investigation demonstrates for the first time that both laser illumination and, to a greater extent, high-energy electron irradiation increase the Te desorption and reduce the Cd desorption from ( 100) CdTe surfaces. Thus it is possible by choosing the proper growth temperature and photon or electron fluxes to change the surface reconstruction from the normally Te-stabilized to a Cd-stabilized phase

    Comparison of band structure calculations and photoluminescence experiments on HgTe/CdTe superlattices grown by molecular beam epitaxy

    Get PDF
    We have grown HgTe/CdTe superlattices by molecular beam epitaxy; barrier thicknesses were in the range from 15 to 91 Å and the well thickness was maintained at a constant value of 30 Å. The infrared photoluminescence was investigated by means of Fourier transform infrared spectroscopy in the temperature range from 4.2 to 300 K. All superlattices showed pronounced photoluminescence at temperatures up to 300 K. To gain more detailed insight into the band structure of the HgTe/CdTe superlattices, band structure calculations were performed. The concept of the envelope function approximation was followed. Employing the transfer matrix method, the calculations were completed taking into account an eight band k·p model. An important parameter in these calculations is the natural valence band offset (VBO) between the well and barrier materials. As a general trend, the value for the direct gap decreases with increasing VBO. The experimentally determined energies of the band gap are in reasonable agreement with the values obtained by the theoretical calculations. A comparison between theory and experiment shows that the observed transition energies are closer to calculations employing a large offset (350 meV) as opposed to a small VBO (40 meV)

    Surface sublimation of zinc blende CdTe

    Get PDF
    The surface sublimation of Cd and Te atoms from the zinc blende (111)A CdTe surface has been investigated in detail by reflection high energy electron diffraction and x-ray photoelectron spectroscopy. These experiments verify that Te is much easier to evaporate than Cd. The experimental value for the Te activation energy from a Te stabilized (111)A CdTe surface is 1.41 ±0.1O eV, which is apparently inconsistent with recent theoretical results
    corecore