644 research outputs found

    Theory for the Doping Dependence of Spin Fluctuation Induced Shadow States in High-Tc_{c} Superconductors

    Full text link
    We analyze the doping dependence of the intensity and energetical position of shadow states in high -Tc_{c} superconductors within the 2D Hubbard model and using our recently developed numerical method for the self consistent summation of bubble and ladder diagrams. It is shown that shadow states resulting from short range antiferromagnetic correlations occur for small but finite excitation energies which decrease for decreasing doping, reflecting a dynamically broken symmetry with increasing lifetime. Simultanously, the intensity of these new states increases, the quasiparticle dispersion is strongly flattened, and a pseudogap in the density of states occurs. Finally, we discuss the importance of flat bands at the Fermi level and nesting of the Fermi surface as general prerequisites for the observability of shadow states.Comment: 9 pages (TeX) with 3 figures (Postscript

    Towards analytic description of a transition from weak to strong coupling regime in correlated electron systems. I. Systematic diagrammatic theory with two-particle Green functions

    Full text link
    We analyze behavior of correlated electrons described by Hubbard-like models at intermediate and strong coupling. We show that with increasing interaction a pole in a generic two-particle Green function is approached. The pole signals metal-insulator transition at half filling and gives rise to a new vanishing ``Kondo'' scale causing breakdown of weak-coupling perturbation theory. To describe the critical behavior at the metal-insulator transition a novel, self-consistent diagrammatic technique with two-particle Green functions is developed. The theory is based on the linked-cluster expansion for the thermodynamic potential with electron-electron interaction as propagator. Parquet diagrams with a generating functional are derived. Numerical instabilities due to the metal-insulator transition are demonstrated on simplifications of the parquet algebra with ring and ladder series only. A stable numerical solution in the critical region is reached by factorization of singular terms via a low-frequency expansion in the vertex function. We stress the necessity for dynamical vertex renormalizations, missing in the simple approximations, in order to describe the critical, strong-coupling behavior correctly. We propose a simplification of the full parquet approximation by keeping only most divergent terms in the asymptotic strong-coupling region. A qualitatively new, feasible approximation suitable for the description of a transition from weak to strong coupling is obtained.Comment: 17 pages, 4 figures, REVTe

    Fluctuation Exchange Analysis of Superconductivity in the Standard Three-Band CuO2 Model

    Full text link
    The fluctuation exchange, or FLEX, approximation for interacting electrons is applied to study instabilities in the standard three-band model for CuO2 layers in the high-temperature superconductors. Both intra-orbital and near-neigbor Coulomb interactions are retained. The filling dependence of the d(x2-y2) transition temperature is studied in both the "hole-doped" and "electron-doped" regimes using parameters derived from constrained-occupancy density-functional theory for La2CuO4. The agreement with experiment on the overdoped hole side of the phase diagram is remarkably good, i.e., transitions emerge in the 40 K range with no free parameters. In addition the importance of the "orbital antiferromagnetic," or flux phase, charge density channel is emphasized for an understanding of the underdoped regime.Comment: REVTex and PostScript, 31 pages, 26 figures; to appear in Phys. Rev. B (1998); only revised EPS figures 3, 4, 6a, 6b, 6c, 7 and 8 to correct disappearance of some labels due to technical problem

    Theory for the Interdependence of High-Tc_c Superconductivity and Dynamical Spin Fluctuations

    Full text link
    The doping dependence of the superconducting state for the 2D one-band Hubbard Hamiltonian is determined. By using an Eliashberg-type theory, we find that the gap function Δk\Delta_{\bf k} has a dx2y2d_{x^2-y^2} symmetry in momentum space and Tc_c becomes maximal for 13  %13 \; \% doping. Since we determine the dynamical excitations directly from real frequency axis calculations, we obtain new structures in the angular resolved density of states related to the occurrence of {\it shadow states} below Tc_c. Explaining the anomalous behavior of photoemission and tunneling experiments in the cuprates, we find a strong interplay between dd-wave superconductivity and dynamical spin fluctuations.Comment: 4 pages (REVTeX) with 4 figures (Postscript

    Toward a systematic 1/d expansion: Two particle properties

    Full text link
    We present a procedure to calculate 1/d corrections to the two-particle properties around the infinite dimensional dynamical mean field limit. Our method is based on a modified version of the scheme of Ref. onlinecite{SchillerIngersent}}. To test our method we study the Hubbard model at half filling within the fluctuation exchange approximation (FLEX), a selfconsistent generalization of iterative perturbation theory. Apart from the inherent unstabilities of FLEX, our method is stable and results in causal solutions. We find that 1/d corrections to the local approximation are relatively small in the Hubbard model.Comment: 4 pages, 4 eps figures, REVTe

    Electronic Theory for the Transition from Fermi-Liquid to Non-Fermi-Liquid Behavior in High-Tc_{c} Superconductors

    Full text link
    We analyze the breakdown of Fermi-liquid behavior within the 2D Hubbard model as function of doping using our recently developed numerical method for the self consistent summation of bubble and ladder diagrams. For larger doping concentrations the system behaves like a conventional Fermi-liquid and for intermediate doping similar to a marginal Fermi-liquid. However, for smaller doping pronounced deviations from both pictures occur which are due to the increasing importance of the short range antiferromagnetic spin fluctuations. This is closely related to the experimental observed shadow states in the normal state of high-TcT_c superconductors. Furthermore, we discuss the implications of our results for transport experiments.Comment: 11 pages (REVTeX) with 4 figures (Postscript

    Stability of self-consistent solutions for the Hubbard model at intermediate and strong coupling

    Full text link
    We present a general framework how to investigate stability of solutions within a single self-consistent renormalization scheme being a parquet-type extension of the Baym-Kadanoff construction of conserving approximations. To obtain a consistent description of one- and two-particle quantities, needed for the stability analysis, we impose equations of motion on the one- as well on the two-particle Green functions simultaneously and introduce approximations in their input, the completely irreducible two-particle vertex. Thereby we do not loose singularities caused by multiple two-particle scatterings. We find a complete set of stability criteria and show that each instability, singularity in a two-particle function, is connected with a symmetry-breaking order parameter, either of density type or anomalous. We explicitly study the Hubbard model at intermediate coupling and demonstrate that approximations with static vertices get unstable before a long-range order or a metal-insulator transition can be reached. We use the parquet approximation and turn it to a workable scheme with dynamical vertex corrections. We derive a qualitatively new theory with two-particle self-consistence, the complexity of which is comparable with FLEX-type approximations. We show that it is the simplest consistent and stable theory being able to describe qualitatively correctly quantum critical points and the transition from weak to strong coupling in correlated electron systems.Comment: REVTeX, 26 pages, 12 PS figure

    The Superconducting Instabilities of the non half-filled Hubbard Model in Two Dimensions

    Full text link
    The problem of weakly correlated electrons on a square lattice is formulated in terms of one-loop renormalization group. Starting from the action for the entire Brillouin zone (and not with a low-energy effective action) we reduce successively the cutoff Λ\Lambda about the Fermi surface and follow the renormalization of the coupling UU as a function of three energy-momenta. We calculate the intrinsic scale TcoT_{co} where the renormalization group flow crosses over from the regime (Λ>Tco\Lambda > T_{co}) where the electron-electron (e-e) and electron-hole (e-h) terms are equally important to the regime (Λ<Tco\Lambda < T_{co}) where only the e-e term plays a role. In the low energy regime only the pairing interaction VV is marginally relevant, containing contributions from all renormalization group steps of the regime Λ>Tco\Lambda > T_{co}. After diagonalization of VΛ=TcoV_{\Lambda =T_{co}}, we identify its most attractive eigenvalue λmin\lambda _{\min}. At low filling, λmin\lambda _{\min} corresponds to the B2B_2 representation (dxyd_{xy} symmetry), while near half filling the strongest attraction occurs in the B1B_1 representation (dx2y2d_{x^2-y^2} symmetry). In the direction of the van Hove singularities, the order parameter shows peaks with increasing strength as one approaches half filling. Using the form of pairing and the structure of the renormalization group equations in the low energy regime, we give our interpretation of ARPES experiments trying to determine the symmetry of the order parameter in the Bi2212 high-TcT_{c} compound.Comment: 24 pages (RevTeX) + 11 figures (the tex file appeared incomplete

    Dynamical Cluster Approximation Employing FLEX as a Cluster Solver

    Full text link
    We employ the Dynamical Cluster Approximation (DCA) in conjunction with the Fluctuation Exchange Approximation (FLEX) to study the Hubbard model. The DCA is a technique to systematically restore the momentum conservation at the internal vertices of Feynman diagrams relinquished in the Dynamical Mean Field Approximation (DMFA). FLEX is a perturbative diagrammatic approach in which classes of Feynman diagrams are summed over analytically using geometric series. The FLEX is used as a tool to investigate the complementarity of the DCA and the finite size lattice technique with periodic boundary conditions by comparing their results for the Hubbard model. We also study the microscopic theory underlying the DCA in terms of compact (skeletal) and non-compact diagrammatic contributions to the thermodynamic potential independent of a specific model. The significant advantages of the DCA implementation in momentum space suggests the development of the same formalism for the frequency space. However, we show that such a formalism for the Matsubara frequencies at finite temperatures leads to acausal results and is not viable. However, a real frequency approach is shown to be feasible.Comment: 15 pages, 24 figures. Submitted to Physical Review B as a Regular Articl

    Operator projection method applied to the single-particle Green's function in the Hubbard model

    Full text link
    A new non-perturbative framework for many-body correlated systems is formulated by extending the operator projection method (OPM). This method offers a systematic expansion which enables us to project into the low-energy structure after extracting the higher-energy hierarchy. This method also opens a way to systematically take into account the effects of collective excitations. The Mott-Hubbard metal-insulator transition in the Hubbard model is studied by means of this projection beyond the second order by taking into account magnetic and charge fluctuations in the presence of the high-energy Mott-Hubbard structure. At half filling, the Mott-Hubbard gap is correctly eproduced between the separated two bands. Near half filling, a strongly renormalized low-energy single-particle excitations coexisting with the Mott-Hubbard bands are shown to appear. Signifcance of momentum-dependent self-energy in the results is stressed.Comment: 6 pages, final version to appear in J. Phys. Soc. Jp
    corecore