409 research outputs found

    Seen and unseen tidal caustics in the Andromeda galaxy

    Full text link
    Indirect detection of high-energy particles from dark matter interactions is a promising avenue for learning more about dark matter, but is hampered by the frequent coincidence of high-energy astrophysical sources of such particles with putative high-density regions of dark matter. We calculate the boost factor and gamma-ray flux from dark matter associated with two shell-like caustics of luminous tidal debris recently discovered around the Andromeda galaxy, under the assumption that dark matter is its own supersymmetric antiparticle. These shell features could be a good candidate for indirect detection of dark matter via gamma rays because they are located far from the primary confusion sources at the galaxy's center, and because the shapes of the shells indicate that most of the mass has piled up near apocenter. Using a numerical estimator specifically calibrated to estimate densities in N-body representations with sharp features and a previously determined N-body model of the shells, we find that the largest boost factors do occur in the shells but are only a few percent. We also find that the gamma-ray flux is an order of magnitude too low to be detected with Fermi for likely dark matter parameters, and about 2 orders of magnitude less than the signal that would have come from the dwarf galaxy that produces the shells in the N-body model. We further show that the radial density profiles and relative radial spacing of the shells, in either dark or luminous matter, is relatively insensitive to the details of the potential of the host galaxy but depends in a predictable way on the velocity dispersion of the progenitor galaxy.Comment: ApJ accepte

    Variable-frequency-train stimulation of skeletal muscle after spinal cord injury

    Get PDF
    Skeletal muscle, after spinal cord injury (SCI), becomes highly susceptible to fatigue. Variable-frequency trains (VFTs) enhance force in fatigued human skeletal muscle of able-bodied (AB) individuals. VFTs do this by taking advantage of the catch-like property of skeletal muscle. However, mechanisms responsible for fatigue in AB and SCI subjects may not be the same, and the efficacy of VFT stimulation after SCI is unknown. Accordingly, we tested the hypothesis that VFT stimulation would augment torque-time integral in SCI subjects. The quadriceps femoris muscle was stimulated with constant frequency trains (CFTs) (six 200 s square wave pulses separated by 70 ms) or VFTs (a train identical to the CFT, except that the first two pulses were separated by 5 ms) in SCI and AB subjects. After 180 contractions (50% duty cycle), isometric peak torque decreased 44, 56, and 67 percent, in the AB (n = 10), acute SCI (n = 10), and chronic SCI (n = 12) groups, respectively. In fatigued muscle, VFTs enhanced the torque-time integral by 18 percent in AB subjects and 6 percent in chronic SCI patients, and had no effect in acute SCI patients when compared to the corresponding CFT. The much faster rise times in SCI subjects (~80 ms vs. 120 ms in AB subjects) probably contributed to the inability of VFTs to enhance torque-time integrals in SCI patients. The results suggest that the use of VFT stimulation in patients with SCI may not be as efficacious as it is in AB persons

    Quantifying Robotic Swarm Coverage

    Full text link
    In the field of swarm robotics, the design and implementation of spatial density control laws has received much attention, with less emphasis being placed on performance evaluation. This work fills that gap by introducing an error metric that provides a quantitative measure of coverage for use with any control scheme. The proposed error metric is continuously sensitive to changes in the swarm distribution, unlike commonly used discretization methods. We analyze the theoretical and computational properties of the error metric and propose two benchmarks to which error metric values can be compared. The first uses the realizable extrema of the error metric to compute the relative error of an observed swarm distribution. We also show that the error metric extrema can be used to help choose the swarm size and effective radius of each robot required to achieve a desired level of coverage. The second benchmark compares the observed distribution of error metric values to the probability density function of the error metric when robot positions are randomly sampled from the target distribution. We demonstrate the utility of this benchmark in assessing the performance of stochastic control algorithms. We prove that the error metric obeys a central limit theorem, develop a streamlined method for performing computations, and place the standard statistical tests used here on a firm theoretical footing. We provide rigorous theoretical development, computational methodologies, numerical examples, and MATLAB code for both benchmarks.Comment: To appear in Springer series Lecture Notes in Electrical Engineering (LNEE). This book contribution is an extension of our ICINCO 2018 conference paper arXiv:1806.02488. 27 pages, 8 figures, 2 table

    Headstrong intervention for pediatric migraine headache: a randomized clinical trial

    Get PDF
    Background The purpose of this study was to evaluate the efficacy of a self-guided CD-ROM program (β€œHeadstrong”) containing cognitive-behavioral self-management strategies versus an educational CD-ROM program for treating headaches, headache-related disability, and quality of life. Methods Participants were 35 children ages 7–12 years with migraine recruited from one university medical center and two children’s hospital headache clinics. Participants were randomly assigned to complete the Headstrong or educational control CD-ROM program over a 4-week period. Data on headache frequency, duration, and severity, migraine-related disability, and quality of life (QOL) were obtained at baseline, post-intervention, and 3-months post-intervention. Results At post-intervention, Headstrong resulted in lower severity (on a 10-point scale) than the control group by child report (5.06 Β± 1.50 SD vs. 6.25 Β± 1.92 SD, p = 0.03, ES = 0.7). At 3-months post-intervention, parents reported less migraine-related disability (on the PedMIDAS) in the Headstrong group compared to the control group (1.36 Β± 2.06 SD vs. 5.18 Β± 6.40 SD; p = 0.04, ES = 0.8). There were no other group differences at post treatment or at 3-months post-intervention. Conclusions When compared to an educational control, Headstrong resulted in lower pain severity at post-treatment and less migraine-related disability at 3-months post-intervention, by child and parent report respectively. Headache frequency and quality of life did not change more for Headstrong versus control. Additional research is needed on the Headstrong Program to increase its efficacy and to test it with a larger sample recruited from multiple centers simultaneously.The study reported in this paper was funded by a grant from the National Institutes of Health, (National Institute of Neurological Disorders and Stroke), R01-NS046641, Michael Rapoff, Principal Investigator

    Aging Predisposes Oocytes to Meiotic Nondisjunction When the Cohesin Subunit SMC1 Is Reduced

    Get PDF
    In humans, meiotic chromosome segregation errors increase dramatically as women age, but the molecular defects responsible are largely unknown. Cohesion along the arms of meiotic sister chromatids provides an evolutionarily conserved mechanism to keep recombinant chromosomes associated until anaphase I. One attractive hypothesis to explain age-dependent nondisjunction (NDJ) is that loss of cohesion over time causes recombinant homologues to dissociate prematurely and segregate randomly during the first meiotic division. Using Drosophila as a model system, we have tested this hypothesis and observe a significant increase in meiosis I NDJ in experimentally aged Drosophila oocytes when the cohesin protein SMC1 is reduced. Our finding that missegregation of recombinant homologues increases with age supports the model that chiasmata are destabilized by gradual loss of cohesion over time. Moreover, the stage at which Drosophila oocytes are most vulnerable to age-related defects is analogous to that at which human oocytes remain arrested for decades. Our data provide the first demonstration in any organism that, when meiotic cohesion begins intact, the aging process can weaken it sufficiently and cause missegregation of recombinant chromosomes. One major advantage of these studies is that we have reduced but not eliminated the SMC1 subunit. Therefore, we have been able to investigate how aging affects normal meiotic cohesion. Our findings that recombinant chromosomes are at highest risk for loss of chiasmata during diplotene argue that human oocytes are most vulnerable to age-induced loss of meiotic cohesion at the stage at which they remain arrested for several years

    Capacity Building for a New Multicenter Network Within the ECHO IDeA States Pediatric Clinical Trials Network

    Get PDF
    Introduction: Research capacity building is a critical component of professional development for pediatrician scientists, yet this process has been elusive in the literature. The ECHO IDeA States Pediatric Clinical Trials Network (ISPCTN) seeks to implement pediatric trials across medically underserved and rural populations. A key component of achieving this objective is building pediatric research capacity, including enhancement of infrastructure and faculty development. This article presents findings from a site assessment inventory completed during the initial year of the ISPCTN. Methods: An assessment inventory was developed for surveying ISPCTN sites. The inventory captured site-level activities designed to increase clinical trial research capacity for pediatrician scientists and team members. The inventory findings were utilized by the ISPCTN Data Coordinating and Operations Center to construct training modules covering 3 broad domains: Faculty/coordinator development; Infrastructure; Trials/Research concept development. Results: Key lessons learned reveal substantial participation in the training modules, the importance of an inventory to guide the development of trainings, and recognizing local barriers to clinical trials research. Conclusions: Research networks that seek to implement successfully completed trials need to build capacity across and within the sites engaged. Our findings indicate that building research capacity is a multi-faceted endeavor, but likely necessary for sustainability of a unique network addressing high impact pediatric health problems. The ISPCTN emphasis on building and enhancing site capacity, including pediatrician scientists and team members, is critical to successful trial implementation/completion and the production of findings that enhance the lives of children and families

    Empirical Bayes analysis of single nucleotide polymorphisms

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>An important goal of whole-genome studies concerned with single nucleotide polymorphisms (SNPs) is the identification of SNPs associated with a covariate of interest such as the case-control status or the type of cancer. Since these studies often comprise the genotypes of hundreds of thousands of SNPs, methods are required that can cope with the corresponding multiple testing problem. For the analysis of gene expression data, approaches such as the empirical Bayes analysis of microarrays have been developed particularly for the detection of genes associated with the response. However, the empirical Bayes analysis of microarrays has only been suggested for binary responses when considering expression values, i.e. continuous predictors.</p> <p>Results</p> <p>In this paper, we propose a modification of this empirical Bayes analysis that can be used to analyze high-dimensional categorical SNP data. This approach along with a generalized version of the original empirical Bayes method are available in the R package siggenes version 1.10.0 and later that can be downloaded from <url>http://www.bioconductor.org</url>.</p> <p>Conclusion</p> <p>As applications to two subsets of the HapMap data show, the empirical Bayes analysis of microarrays cannot only be used to analyze continuous gene expression data, but also be applied to categorical SNP data, where the response is not restricted to be binary. In association studies in which typically several ten to a few hundred SNPs are considered, our approach can furthermore be employed to test interactions of SNPs. Moreover, the posterior probabilities resulting from the empirical Bayes analysis of (prespecified) interactions/genotypes can also be used to quantify the importance of these interactions.</p

    corona Is Required for Higher-Order Assembly of Transverse Filaments into Full-Length Synaptonemal Complex in Drosophila Oocytes

    Get PDF
    The synaptonemal complex (SC) is an intricate structure that forms between homologous chromosomes early during the meiotic prophase, where it mediates homolog pairing interactions and promotes the formation of genetic exchanges. In Drosophila melanogaster, C(3)G protein forms the transverse filaments (TFs) of the SC. The N termini of C(3)G homodimers localize to the Central Element (CE) of the SC, while the C-termini of C(3)G connect the TFs to the chromosomes via associations with the axial elements/lateral elements (AEs/LEs) of the SC. Here, we show that the Drosophila protein Corona (CONA) co-localizes with C(3)G in a mutually dependent fashion and is required for the polymerization of C(3)G into mature thread-like structures, in the context both of paired homologous chromosomes and of C(3)G polycomplexes that lack AEs/LEs. Although AEs assemble in cona oocytes, they exhibit defects that are characteristic of c(3)G mutant oocytes, including failure of AE alignment and synapsis. These results demonstrate that CONA, which does not contain a coiled coil domain, is required for the stable β€˜zippering’ of TFs to form the central region of the Drosophila SC. We speculate that CONA's role in SC formation may be similar to that of the mammalian CE proteins SYCE2 and TEX12. However, the observation that AE alignment and pairing occurs in Tex12 and Syce2 mutant meiocytes but not in cona oocytes suggests that the SC plays a more critical role in the stable association of homologs in Drosophila than it does in mammalian cells

    Remarkable fly (Diptera) diversity in a patch of Costa Rican cloud forest : Why inventory is a vital science

    Get PDF
    Study of all flies (Diptera) collected for one year from a four-hectare (150 x 266 meter) patch of cloud forest at 1,600 meters above sea level at Zurqui de Moravia, San Jose Province, Costa Rica (hereafter referred to as Zurqui), revealed an astounding 4,332 species. This amounts to more than half the number of named species of flies for all of Central America. Specimens were collected with two Malaise traps running continuously and with a wide array of supplementary collecting methods for three days of each month. All morphospecies from all 73 families recorded were fully curated by technicians before submission to an international team of 59 taxonomic experts for identification. Overall, a Malaise trap on the forest edge captured 1,988 species or 51% of all collected dipteran taxa (other than of Phoridae, subsampled only from this and one other Malaise trap). A Malaise trap in the forest sampled 906 species. Of other sampling methods, the combination of four other Malaise traps and an intercept trap, aerial/hand collecting, 10 emergence traps, and four CDC light traps added the greatest number of species to our inventory. This complement of sampling methods was an effective combination for retrieving substantial numbers of species of Diptera. Comparison of select sampling methods (considering 3,487 species of non-phorid Diptera) provided further details regarding how many species were sampled by various methods. Comparison of species numbers from each of two permanent Malaise traps from Zurqui with those of single Malaise traps at each of Tapanti and Las Alturas, 40 and 180 km distant from Zurqui respectively, suggested significant species turnover. Comparison of the greater number of species collected in all traps from Zurqui did not markedly change the degree of similarity between the three sites, although the actual number of species shared did increase. Comparisons of the total number of named and unnamed species of Diptera from four hectares at Zurqui is equivalent to 51% of all flies named from Central America, greater than all the named fly fauna of Colombia, equivalent to 14% of named Neotropical species and equal to about 2.7% of all named Diptera worldwide. Clearly the number of species of Diptera in tropical regions has been severely underestimated and the actual number may surpass the number of species of Coleoptera. Various published extrapolations from limited data to estimate total numbers of species of larger taxonomic categories (e.g., Hexapoda, Arthropoda, Eukaryota, etc.) are highly questionable, and certainly will remain uncertain until we have more exhaustive surveys of all and diverse taxa (like Diptera) from multiple tropical sites. Morphological characterization of species in inventories provides identifications placed in the context of taxonomy, phylogeny, form, and ecology. DNA barcoding species is a valuable tool to estimate species numbers but used alone fails to provide a broader context for the species identified.Peer reviewe

    Structural Maintenance of Chromosomes (SMC) Proteins Promote Homolog-Independent Recombination Repair in Meiosis Crucial for Germ Cell Genomic Stability

    Get PDF
    In meiosis, programmed DNA breaks repaired by homologous recombination (HR) can be processed into inter-homolog crossovers that promote the accurate segregation of chromosomes. In general, more programmed DNA double-strand breaks (DSBs) are formed than the number of inter-homolog crossovers, and the excess DSBs must be repaired to maintain genomic stability. Sister-chromatid (inter-sister) recombination is postulated to be important for the completion of meiotic DSB repair. However, this hypothesis is difficult to test because of limited experimental means to disrupt inter-sister and not inter-homolog HR in meiosis. We find that the conserved Structural Maintenance of Chromosomes (SMC) 5 and 6 proteins in Caenorhabditis elegans are required for the successful completion of meiotic homologous recombination repair, yet they appeared to be dispensable for accurate chromosome segregation in meiosis. Mutations in the smc-5 and smc-6 genes induced chromosome fragments and dismorphology. Chromosome fragments associated with HR defects have only been reported in mutants, which have disrupted inter-homolog crossover. Surprisingly, the smc-5 and smc-6 mutations did not disrupt the formation of chiasmata, the cytologically visible linkages between homologous chromosomes formed from meiotic inter-homolog crossovers. The mutant fragmentation defect appeared to be preferentially enhanced by the disruptions of inter-homolog recombination but not by the disruptions of inter-sister recombination. Based on these findings, we propose that the C. elegans SMC-5/6 proteins are required in meiosis for the processing of homolog-independent, presumably sister-chromatid-mediated, recombination repair. Together, these results demonstrate that the successful completion of homolog-independent recombination is crucial for germ cell genomic stability
    • …
    corecore