172 research outputs found

    Mesoscopic theory of the viscoelasticity of polymers

    Full text link
    We have advanced our previous static theory of polymer entanglement involving an extended Cahn-Hilliard functional, to include time-dependent dynamics. We go beyond the Gaussian approximation, to the one-loop level, to compute the frequency dependent storage and loss moduli of the system. The three parameters in our theory are obtained by fitting to available experimental data on polystyrene melts of various chain lengths. This provides a physical representation of the parameters in terms of the chain length of the system. We discuss the importance of the various terms in our energy functional with respect to their contribution to the viscoelastic response of the polymeric system.Comment: Submitted to Phys. Rev.

    Time scale analysis for fluidizedbedmeltgranulation-II: binder spreading rate

    Get PDF
    The spreading time of liquid binder droplet on the surface a primary particle is analyzed for Fluidized Bed Melt Granulation (FBMG). As discussed in the first paper of this series (Chua et al., in press) the droplet spreading rate has been identified as one of the important parameters affecting the probability of particles aggregation in FBMG. In this paper, the binder droplet spreading time has been estimated using Computational Fluid Dynamic modeling (CFD) based on Volume of Fluid approach (VOF). A simplified analytical solution has been developed and tested to explore its validity for predicting the spreading time. For the purpose of models validation, the droplet spreading evolution was recorded using a high speed video camera. Based on the validated model, a generalized correlative equation for binder spreading time is proposed. For the operating conditions considered here, the spreading time for Polyethylene Glycol (PEG1500) binder was found to fall within the range of 10-2 to 10-5 s. The study also included a number of other common binders used in FBMG. The results obtained here will be further used in paper III, where the binder solidification rate is discussed

    Molecular modeling of temperature dependence of solubility parameters for amorphous polymers

    Get PDF
    A molecular modeling strategy is proposed to describe the temperature (T) dependence of solubility parameter (δ) for the amorphous polymers which exhibit glass-rubber transition behavior. The commercial forcefield “COMPASS” is used to support the atomistic simulations of the polymer. The temperature dependence behavior of δ for the polymer is modeled by running molecular dynamics (MD) simulation at temperatures ranging from 250 up to 650 K. Comparing the MD predicted δ value at 298 K and the glass transition temperature (Tg) of the polymer determined from δ–T curve with the experimental value confirm the accuracy of our method. The MD modeled relationship between δ and T agrees well with the previous theoretical works. We also observe the specific volume (v), cohesive energy (Ucoh), cohesive energy density (ECED) and δ shows a similar temperature dependence characteristics and a drastic change around the Tg. Meanwhile, the applications of δ and its temperature dependence property are addressed and discussed

    Modeling Through Transmission Ultrasonics for Controlling the Fusion Bonding of Composites

    No full text
    Fusion bonding is an attractive technology for joining polymer matrix composites. The advantages of using this technique are good environmental resistance, high strength (ideally that of the parent materials), and the lack of any mechanical fasteners. This study presents a model for predicting the through transmission ultrasonic (TTU) amplitude response of multilayered composite media having a thermal gradient through the thickness, as seen in a fusion bonding process. The received TTU amplitude is predicted as a function of temperature at the interface of interest. The model response to frequency and layer stacking sequence was investigated.</p

    MORPHOLOGICAL PROPERTIES OF PYRROLE AND PHENYLENE ROD–COIL DIBLOCK COPOLYMERS BY DISSIPATIVE PARTICLE DYNAMICS

    No full text
    Poly (para-phenylene)s (PPP) and polypyrroles (PPy) are important members of the conducting polymers. Rod-coil type diblock copolymers formed by coupling of PPP and PPy rigid blocks with polycaprolactone (PCL), polystyrene (PS) and polymethylmethacrylate (PMMA) coil blocks were modeled and morphological properties have been studied by a coarse grained simulation method at the mesoscale. Geometry optimizations and the atomic charge calculations were done quantum mechanically to obtain the input parameters for the mesoscale dynamics simulations. The accurate mixing energies and the Flory-Huggins interaction parameters between the monomers of polymers were calculated and used to study the phase behaviors and the morphologies of the copolymers as a function of type and weight percentages of the blocks by Dissipative Particle Dynamics (DPD) simulations. We showed that the methodology employed took into account not only the interaction parameter and chain length of the blocks but also the chemical structure of the polymers and it could be used to produce the phase diagram of the copolymers which has importance for the industrial applications of such materials. Among the studied copolymers, the most suitable one for thin layer applications was predicted to be PPP-b-PCL in which PPP forms lamellar and cylindrical phases in the PCL matrix if amount of PPP rod block is below 50 wt%

    An Informatics Approach for Designing Conducting Polymers

    No full text
    • …
    corecore