29 research outputs found

    Laser interstitial thermal therapy in pediatric cerebellar epilepsy

    Full text link
    Cerebellar lesional epilepsy is rare, commonly manifesting in early life and posing diagnostic and treatment challenges. Seizure semiology may be subtle, with repetitive eye blinking, face twitching, and irregular breathing, while EEG commonly remains unremarkable. Pharmacoresistance is the rule, and surgical intervention is the only treatment with the potential for cure. Novel minimally invasive techniques, such as laser interstitial thermal therapy (LITT), are emerging for surgically less accessible, deep-seated epileptogenic lesions. We report the case of a patient who presented with peculiar eye and face movements occurring episodically and stereotypically since the first weeks of life and was later diagnosed with cerebellar epilepsy related to a hamartoma. Refractory daily seizures, unresponsive to antiseizure medication, were followed by increasingly prominent gait ataxia and delayed speech development. Staged LITT was performed in two consecutive sessions at 3 and 4 years, leading to seizure cessation, neurological improvement, and developmental gains over a postsurgical follow-up period of 8 months. Our case highlights cerebellar lesional epilepsy as a rare but important differential diagnosis in children with paroxysmal disorders predominantly involving the face. Furthermore, we illustrate the radiological correlates of neurocognitive deficit related to the cerebellar lesion, manifesting as cerebello-cerebral diaschisis. Most importantly, our observations showcase LITT as a safe and effective therapeutic approach in cerebellar lesional epilepsy and an attractive alternative to open brain surgery, especially for deep-seated lesions in the pediatric population

    Increase in Low-Frequency Oscillations in fNIRS as Cerebral Response to Auditory Stimulation with Familiar Music

    Full text link
    Recognition of typical patterns of brain response to external stimuli using near-infrared spectroscopy (fNIRS) may become a gateway to detecting covert consciousness in clinically unresponsive patients. This is the first fNIRS study on the cortical hemodynamic response to favorite music using a frequency domain approach. The aim of this study was to identify a possible marker of cognitive response in healthy subjects by investigating variations in the oscillatory signal of fNIRS in the spectral regions of low-frequency (LFO) and very-low-frequency oscillations (VLFO). The experiment consisted of two periods of exposure to preferred music, preceded and followed by a resting phase. Spectral power in the LFO region increased in all the subjects after the first exposure to music and decreased again in the subsequent resting phase. After the second music exposure, the increase in LFO spectral power was less distinct. Changes in LFO spectral power were more after first music exposure and the repetition-related habituation effect strongly suggest a cerebral origin of the fNIRS signal. Recognition of typical patterns of brain response to specific environmental stimulation is a required step for the concrete validation of a fNIRS-based diagnostic tool

    Functional NIRS to detect covert consciousness in neurocritical patients

    Full text link
    Objective This pilot study assesses the feasibility to detect covert consciousness in clinically unresponsive patients by means of functional near infrared spectroscopy (fNIRS) in a real intensive care unit setting. We aimed to verify if the hemodynamic response to familiar music measured with fNIRS varies according to the level consciousness of the patients. Methods 22 neurocritical patients and 6 healthy controls were included. The experiment consisted in 3 subsequent blocks including a first resting state recording, a period of music playback and a second resting state recording. fNIRS measurement were performed on each subject with two optodes on the forehead. Main oscillatory frequencies of oxyhemoglobin signal were analyzed. Spectral changes of low frequency oscillations (LFO) between subsequent experimental blocks were used as a marker of cortical response. Cortical response was compared to the level of consciousness of the patients and their functional outcome, through validated clinical scores. Results Cortical hemodynamic response to music on the left prefrontal brain was associated with the level of consciousness of the patients and with their clinical outcome after three months. Conclusions Variations in LFO spectral power measured with fNIRS may be a new marker of cortical responsiveness to detect covert consciousness in neurocritical patients. Left prefrontal cortex may play an important role in the perception of familiar music. Significance We showed the feasibility of a simple fNIRS approach to detect cortical response in the real setting of an intensive care unit

    Characterization of GECPAR, a noncoding RNA that regulates the transcriptional program of diffuse large B cell lymphoma

    Get PDF
    Enhancers are regulatory regions of DNA, which play a key role in cell-type specific differentiation and development. Most active enhancers are transcribed into enhancer RNAs (eRNAs) that can regulate transcription of target genes by means of in cis as well as in trans action. eRNAs stabilize contacts between distal genomic regions and mediate the interaction of DNA with master transcription factors. Here, we characterised an enhancer RNA, GECPAR (GErminal Center Proliferative Adapter RNA), that is specifically transcribed in normal and neoplastic germinal center B-cells from the super-enhancer of POU2AF1, a key regulatory gene of the germinal center reaction. Using diffuse large B cell lymphoma cell line models, we demonstrated the tumor suppressor activity of GECPAR, which is mediated via its transcriptional regulation of proliferation and differentiation genes, particularly MYC and the Wnt pathway

    Induction of immunosuppressive functions and NF-\u3baB by FLIP in monocytes

    Get PDF
    Immunosuppression is a hallmark of tumor progression, and treatments that inhibit or deplete monocytic myeloid-derived suppressive cells could promote anti-tumor immunity. c-FLIP is a central regulator of caspase-8-mediated apoptosis and necroptosis. Here we show that low-dose cytotoxic chemotherapy agents cause apoptosis linked to c-FLIP down-regulation selectively in monocytes. Enforced expression of c-FLIP or viral FLIP rescues monocytes from cytotoxicity and concurrently induces potent immunosuppressive activity, in T cell cultures and in vivo models of tumor progression and immunotherapy. FLIP-transduced human blood monocytes can suppress graft versus host disease. Neither expression of FLIP in granulocytes nor expression of other anti-apoptotic genes in monocytes conferred immunosuppression, suggesting that FLIP effects on immunosuppression are specific to monocytic lineage and distinct from death inhibition. Mechanistically, FLIP controls a broad transcriptional program, partially by NF-\u3baB activation. Therefore, modulation of FLIP in monocytes offers a means to elicit or block immunosuppressive myeloid cells

    Association of Mortality and Risk of Epilepsy With Type of Acute Symptomatic Seizure After Ischemic Stroke and an Updated Prognostic Model

    Get PDF
    IMPORTANCE: Acute symptomatic seizures occurring within 7 days after ischemic stroke may be associated with an increased mortality and risk of epilepsy. It is unknown whether the type of acute symptomatic seizure influences this risk. OBJECTIVE: To compare mortality and risk of epilepsy following different types of acute symptomatic seizures. DESIGN, SETTING, AND PARTICIPANTS: This cohort study analyzed data acquired from 2002 to 2019 from 9 tertiary referral centers. The derivation cohort included adults from 7 cohorts and 2 case-control studies with neuroimaging-confirmed ischemic stroke and without a history of seizures. Replication in 3 separate cohorts included adults with acute symptomatic status epilepticus after neuroimaging-confirmed ischemic stroke. The final data analysis was performed in July 2022. EXPOSURES: Type of acute symptomatic seizure. MAIN OUTCOMES AND MEASURES: All-cause mortality and epilepsy (at least 1 unprovoked seizure presenting >7 days after stroke). RESULTS: A total of 4552 adults were included in the derivation cohort (2547 male participants [56%]; 2005 female [44%]; median age, 73 years [IQR, 62-81]). Acute symptomatic seizures occurred in 226 individuals (5%), of whom 8 (0.2%) presented with status epilepticus. In patients with acute symptomatic status epilepticus, 10-year mortality was 79% compared with 30% in those with short acute symptomatic seizures and 11% in those without seizures. The 10-year risk of epilepsy in stroke survivors with acute symptomatic status epilepticus was 81%, compared with 40% in survivors with short acute symptomatic seizures and 13% in survivors without seizures. In a replication cohort of 39 individuals with acute symptomatic status epilepticus after ischemic stroke (24 female; median age, 78 years), the 10-year risk of mortality and epilepsy was 76% and 88%, respectively. We updated a previously described prognostic model (SeLECT 2.0) with the type of acute symptomatic seizures as a covariate. SeLECT 2.0 successfully captured cases at high risk of poststroke epilepsy. CONCLUSIONS AND RELEVANCE: In this study, individuals with stroke and acute symptomatic seizures presenting as status epilepticus had a higher mortality and risk of epilepsy compared with those with short acute symptomatic seizures or no seizures. The SeLECT 2.0 prognostic model adequately reflected the risk of epilepsy in high-risk cases and may inform decisions on the continuation of antiseizure medication treatment and the methods and frequency of follow-up

    Utilization of mechanical power and associations with clinical outcomes in brain injured patients: a secondary analysis of the extubation strategies in neuro-intensive care unit patients and associations with outcome (ENIO) trial

    Get PDF
    Background: There is insufficient evidence to guide ventilatory targets in acute brain injury (ABI). Recent studies have shown associations between mechanical power (MP) and mortality in critical care populations. We aimed to describe MP in ventilated patients with ABI, and evaluate associations between MP and clinical outcomes. Methods: In this preplanned, secondary analysis of a prospective, multi-center, observational cohort study (ENIO, NCT03400904), we included adult patients with ABI (Glasgow Coma Scale ≀ 12 before intubation) who required mechanical ventilation (MV) ≄ 24 h. Using multivariable log binomial regressions, we separately assessed associations between MP on hospital day (HD)1, HD3, HD7 and clinical outcomes: hospital mortality, need for reintubation, tracheostomy placement, and development of acute respiratory distress syndrome (ARDS). Results: We included 1217 patients (mean age 51.2 years [SD 18.1], 66% male, mean body mass index [BMI] 26.3 [SD 5.18]) hospitalized at 62 intensive care units in 18 countries. Hospital mortality was 11% (n = 139), 44% (n = 536) were extubated by HD7 of which 20% (107/536) required reintubation, 28% (n = 340) underwent tracheostomy placement, and 9% (n = 114) developed ARDS. The median MP on HD1, HD3, and HD7 was 11.9 J/min [IQR 9.2-15.1], 13 J/min [IQR 10-17], and 14 J/min [IQR 11-20], respectively. MP was overall higher in patients with ARDS, especially those with higher ARDS severity. After controlling for same-day pressure of arterial oxygen/fraction of inspired oxygen (P/F ratio), BMI, and neurological severity, MP at HD1, HD3, and HD7 was independently associated with hospital mortality, reintubation and tracheostomy placement. The adjusted relative risk (aRR) was greater at higher MP, and strongest for: mortality on HD1 (compared to the HD1 median MP 11.9 J/min, aRR at 17 J/min was 1.22, 95% CI 1.14-1.30) and HD3 (1.38, 95% CI 1.23-1.53), reintubation on HD1 (1.64; 95% CI 1.57-1.72), and tracheostomy on HD7 (1.53; 95%CI 1.18-1.99). MP was associated with the development of moderate-severe ARDS on HD1 (2.07; 95% CI 1.56-2.78) and HD3 (1.76; 95% CI 1.41-2.22). Conclusions: Exposure to high MP during the first week of MV is associated with poor clinical outcomes in ABI, independent of P/F ratio and neurological severity. Potential benefits of optimizing ventilator settings to limit MP warrant further investigation

    Precision medicine in secondary prevention of ischemic stroke: how may blood-based biomarkers help in clinical routine? An expert opinion

    Full text link
    PURPOSE OF REVIEW One in eight patients unfortunately suffers a new stroke within 5 years of their first stroke, even today. Research in precision medicine could lead to a more individualized treatment allocation, possibly achieving lower recurrence rates of ischemic stroke. In this narrative review, we aim to discuss potential clinical implementation of several promising candidate blood biomarkers. RECENT FINDINGS We discuss specifically some promising blood-based biomarkers, which may improve the identification of underlying causes as well as risk stratification of patients according to their specific cerebrovascular risk factor pattern. SUMMARY Multimodal profiling of ischemic stroke patients by means of blood biomarkers, in addition to established clinical and neuroradiological data, may allow in the future a refinement of decision algorithms for treatment allocation in secondary ischemic stroke prevention

    Low frequency oscillations reflect neurovascular coupling and disappear after cerebral death

    Get PDF
    Spectrum power analysis in the low frequency oscillations (LFO) region of functional near infrared spectroscopy (fNIRS) is a promising method to deliver information about brain activation and therefore might be used for prognostication in patients with disorders of consciousness in the neurocritical care unit alongside with established methods. In this study, we measure the cortical hemodynamic response measured by fNIRS in the LFO region following auditory and somatosensory stimulation in healthy subjects. The significant hemodynamic reaction in the contralateral hemisphere correlation with the physiologic electric response suggests neurovascular coupling. In addition, we investigate power spectrum changes in steady state measurements of cerebral death patients and healthy subjects in the LFO region, the frequency of the heartbeat and respiration. The spectral power within the LFO region was lower in the patients with cerebral death compared to the healthy subjects, whereas there were no differences in spectral power for physiological activities such as heartbeat and respiration rate. This finding indicates the cerebral origin of our low frequency measurements. Therefore, LFO measurements are a potential method to detect brain activation in patients with disorders of consciousness and cerebral death. However, further studies in patients are needed to investigate its potential clinical use
    corecore