131 research outputs found

    Abelian Gauge Theory in de Sitter Space

    Full text link
    Quantization of spinor and vector free fields in 4-dimensional de Sitter space-time, in the ambient space notation, has been studied in the previous works. Various two-points functions for the above fields are presented in this paper. The interaction between the spinor field and the vector field is then studied by the abelian gauge theory. The U(1) gauge invariant spinor field equation is obtained in a coordinate independent way notation and their corresponding conserved currents are computed. The solution of the field equation is obtained by use of the perturbation method in terms of the Green's function. The null curvature limit is discussed in the final stage.Comment: 10 pages, typos corrected, reference adde

    Levi-Civita cylinders with fractional angular deficit

    Full text link
    The angular deficit factor in the Levi-Civita vacuum metric has been parametrized using a Riemann-Liouville fractional integral. This introduces a new parameter into the general relativistic cylinder description, the fractional index {\alpha}. When the fractional index is continued into the negative {\alpha} region, new behavior is found in the Gott-Hiscock cylinder and in an Israel shell.Comment: 5 figure

    Towards a model of population of astrophysical sources of ultra-high-energy cosmic rays

    Full text link
    We construct and discuss a toy model of the population of numerous non-identical extragalactic sources of ultra-high-energy cosmic rays. In the model, cosmic-ray particles are accelerated in magnetospheres of supermassive black holes in galactic nuclei, the key parameter of acceleration being the black-hole mass. We use astrophysical data on the redshift-dependent black-hole mass function to describe the population of these cosmic-ray accelerators, from weak to powerful, and confront the model with cosmic-ray data.Comment: 9 pages, 4 figures, Revtex 4.

    Late-time evolution of a self-interacting scalar field in the spacetime of dilaton black hole

    Get PDF
    We investigate the late-time tails of self-interacting (massive) scalar fields in the spacetime of dilaton black hole. Following the no hair theorem we examine the mechanism by which self-interacting scalar hair decay. We revealed that the intermediate asymptotic behavior of the considered field perturbations is dominated by an oscillatory inverse power-law decaying tail. The numerical simulations showed that at the very late-time massive self-interacting scalar hair decayed slower than any power law.Comment: 8 pages, 4 figures, to appear in Phys. Rev.

    Disks in Expanding FRW Universes

    Get PDF
    We construct exact solutions to Einstein equations which represent relativistic disks immersed into an expanding FRW Universe. It is shown that the expansion influences dynamical characteristics of the disks such as rotational curves, surface mass density, etc. The effects of the expansion is exemplified with non-static generalizations of Kuzmin-Curzon and generalized Schwarzschild disks.Comment: Revised version to appear in ApJ, Latex, 17 pages, 10 figures, uses aaspp4 and epsf style file

    Profiles of emission lines generated by rings orbiting braneworld Kerr black holes

    Full text link
    In the framework of the braneworld models, rotating black holes can be described by the Kerr metric with a tidal charge representing the influence of the non-local gravitational (tidal) effects of the bulk space Weyl tensor onto the black hole spacetime. We study the influence of the tidal charge onto profiled spectral lines generated by radiating tori orbiting in vicinity of a rotating black hole. We show that with lowering the negative tidal charge of the black hole, the profiled line becomes to be flatter and wider keeping their standard character with flux stronger at the blue edge of the profiled line. The extension of the line grows with radius falling and inclination angle growing. With growing inclination angle a small hump appears in the profiled lines due to the strong lensing effect of photons coming from regions behind the black hole. For positive tidal charge (b>0b>0) and high inclination angles two small humps appear in the profiled lines close to the red and blue edge of the lines due to the strong lensing effect. We can conclude that for all values of bb, the strongest effect on the profiled lines shape (extension) is caused by the changes of the inclination angle.Comment: Accepted by General Relativity and Gravitatio

    Scalar wave propagation in topological black hole backgrounds

    Get PDF
    We consider the evolution of a scalar field coupled to curvature in topological black hole spacetimes. We solve numerically the scalar wave equation with different curvature-coupling constant Îľ\xi and show that a rich spectrum of wave propagation is revealed when Îľ\xi is introduced. Relations between quasinormal modes and the size of different topological black holes have also been investigated.Comment: 26 pages, 18 figure

    Stationary Cylindrical Anisotropic Fluid

    Get PDF
    We present the whole set of equations with regularity and matching conditions required for the description of physically meaningful stationary cylindrically symmmetric distributions of matter, smoothly matched to Lewis vacuum spacetime. A specific example is given. The electric and magnetic parts of the Weyl tensor are calculated, and it is shown that purely electric solutions are necessarily static. Then, it is shown that no conformally flat stationary cylindrical fluid exits, satisfying regularity and matching conditions.Comment: 17 pages Latex. To appear in Gen.Rel.Gra
    • …
    corecore