27 research outputs found

    High temperature and high pressure plasma electrolysis experiments

    Get PDF
    Ohmori et al. (1), then Mizuno et al. (2,3) showed in high voltage-high current electrolysis experiments the production of excess heat and abnormal production of hydrogen. Cirillo et al. (4) have shown transmutation of elements on the tungsten cathode during similar types of plasma electrolysis. Also, Fauvarque et al. (5) have shown the production of excess heat. All these experiments have been performed with light water at boiling temperature i.e. 100[degrees]C and atmospheric pressure. We have developed a new calorimeter that can operate at higher temperatures and higher pressures. The cell is of cylindrical shape made of Teflon 10 cm in diameter and 21 cm high. The cell is positioned on a balance in order to measure continuously the weight loss of the cell during operation. The tungsten cathode of various diameters is located at the center of the cell, and the anode is a stainless steel foil surrounding the cathode. A mechanical pressure gauge permits the measurement of the pressure of the cell. The temperature is calculated from the pressure temperature boiling curve. A calibrated relief valve keeps the pressure constant in the cell. The electrical input power is measured by a high-speed wattmeter, and the heat produced is calculated from the weight loss of the cell. The cell is also equipped with a resistor for calibration of the system, and heating the water to boiling prior to the start of the electrolysis. At the conference we will give the new results showing the influence of the pressure and the temperature to the excess heat

    Application of inelastic epithermal neutron scattering to the vibrational spectroscopy of adsorbed molecules: Butane physisorbed on graphite (0001) surfaces

    Get PDF
    doi:10.1063/1.448924Inelastic epithermal neutron scattering (IENS) has been used to investigate the intramolecular vibrations of butane [CH3(CH2)2CH3] physisorbed on the (0001) surfaces of a graphite powder. The purpose of these studies was to assess IENS as a vibrational spectroscopy for adsorbed species by using a relatively well‐characterized substrate (Carbopack B). The experiments were performed on the IN1 spectrometer located on a beam from the ''hot'' source at the Institut Laue‐Langevin reactor in Grenoble. Film coverages of 1.0 and 3.6 layers were investigated at a temperature of 78 K. The IENS spectra are rich in structure, containing eight vibrational bands in the energy‐transfer range from 280-3470 cm−1 (35-430 meV). The similarity in the spectra at the two coverages investigated indicates that in this energy‐transfer range the butane intramolecular modes are not strongly perturbed by physisorption on graphite. A detailed comparison is made between the monolayer IENS spectrum and those calculated from models of a free and adsorbed molecule. Both models employ a previously derived intramolecular force field in the normal mode calculation. A third calculation assumes the displacement eigenvectors of the free molecule but replaces the mode eigenfrequencies by their measured Raman and IR values. It reproduces the observed IENS spectra very well. The large number of vibrational bands observed and the close agreement with the calculated spectra suggest butane as a desirable adsorbate for similar experiments on catalytic substrates.This work was supported in part by National Science Foundation Grants DMR-1905958, INT- 8012228, and DMR-8304366 and by a grant of the Petroleum Research fund, administered by the American Chemical Society

    High anisotropic inserted dendritic growth during first stage of Zn monolayer deposition on Ag(111) substrate

    Full text link
    Sub-monolayer physical layer deposition of Zn on Ag(111) substrate at room temperature is investigated using Auger electron spectroscopy, low energy electron diffraction and scanning tunneling microscopy. We identified an original Zn highly-anisotropic structure in the shape of finger-like inserted dendrite in front of Zn monolayer growth. On the basis of STM observations, a mechanism of inserted dendritic growth and a mechanism of its transition to layered growth are proposed.Comment: 15 pages and 7 figure
    corecore