58 research outputs found

    KSHV/HHV-8 and HIV infection in Kaposi's sarcoma development

    Get PDF
    Kaposi's sarcoma (KS) is a highly and abnormally vascularized tumor-like lesion affecting the skin, lymphnodes and viscera, which develops from early inflammatory stages of patch/plaque to late, nodular tumors composed predominant of spindle cells (SC). These SC are infected with the Kaposi's sarcoma-associated herpesvirus or human herpesvirus-8 (KSHV/HHV-8). KS is promoted during HIV infection by various angiogenic and pro-inflammatory factors including HIV-Tat. The latency associated nuclear antigen type 1 (LANA-1) protein is well expressed in SC, highly immunogenic and considered important in the generation and maintenance of HHV-8 associated malignancies. Various studies favour an endothelial origin of the KS SC, expressing "mixed" lymphatic and vascular endothelial cell markers, possibly representing hybrid phenotypes of endothelial cells (EC). A significant number of SC during KS development are apparently not HHV8 infected, which heterogeneity in viral permissiveness may indicate that non-infected SC may continuously be recruited in to the lesion from progenitor cells and locally triggered to develop permissiveness to HHV8 infection. In the present study various aspects of KS pathogenesis are discussed, focusing on the histopathological as well as cytogenetic and molecular genetic changes in KS

    Subpopulations of Mononuclear Cells in Microscopic Lesions of Psoriatic Patients. Selective Accumulation of Suppressor/Cytotoxic T Cells in Epidermis During the Evolution of the Lesion

    Get PDF
    The age of microscopic lesions in psoriatic subjects was assessed from the stacking characteristics in the horny layer and related to type and density (cells/tissue volume) of mononuclear cells in the epidermis and the dermis determined by immunoperoxidase methods using monoclonal antibodies. Pan T cells (Lyt-2+, Lyt-3+, Leu-4+, OKT3+), T helper cells (Leu-3a+, OKT4+), T suppressor/cytotoxic cells (Leu-2a+, OKT8+), Ia+ cells and monocytes (OKM2+, BRL αmono+) were determined in epidermis and dermis. The psoriatic lesion was divided into regions underneath a parakeratotic and an orthohyperkeratotic/hypergranular portion of the horny layer and contrasted with perilesional and uninvolved psoriatic skin as well as with healthy skin. In the various regions and skin layers, the cell density was highest in parakeratosis and decreased toward normality with decreasing histologic abnormality. The relation between epidermal and dermal cell densities of the T-cell subsets was modified in the involved psoriatic skin with a selective preponderance of T suppressor/cytotoxic cells in the epidermis. The accumulation was present in the youngest lesion found (3 days) and cell densities were unchanged in older lesions. The finding suggests that the altered relationship in the subsets of T cells has an important role during the induction and progress of the psoriatic process in the skin

    Tanzanian malignant lymphomas: WHO classification, presentation, ploidy, proliferation and HIV/EBV association

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>In Tanzania, the International Working Formulation [WF] rather than the WHO Classification is still being used in diagnosing malignant lymphomas (ML) and the biological characterization including the HIV/EBV association is sketchy, thus restraining comparison, prognostication and application of established therapeutic protocols.</p> <p>Methods</p> <p>Archival, diagnostic ML biopsies (N = 336), available sera (N = 35) screened by ELISA for HIV antibodies and corresponding clinical/histological reports at Muhimbili National Hospital (MNH) in Tanzania between 1996 and 2006 were retrieved and evaluated. A fraction (N = 174) were analyzed by histopathology and immunohistochemistry (IHC). Selected biopsies were characterized by flow-cytometry (FC) for DNA ploidy (N = 60) and some by <it>in-situ </it>hybridization (ISH) for EBV-encoded RNA (EBER, N = 37).</p> <p>Results</p> <p>A third (38.8%, 109/281) of the ML patients with available clinical information had extranodal disease presentation. A total of 158 out of 174 biopsies selected for immunophenotyping were confirmed to be ML which were mostly (84. 8%, 134/158) non-Hodgkin lymphoma (NHL). Most (83.6%, 112/134) of NHL were B-cell lymphomas (BCL) (CD20+), of which 50.9%, (57/112) were diffuse large B-cell (DLBCL). Out of the 158 confirmed MLs, 22 (13.9%) were T-cell [CD3+] lymphomas (TCL) and 24 (15.2%) were Hodgkin lymphomas (HL) [CD30+]. Furthermore, out of the 60 FC analyzed ML cases, 27 (M:F ratio 2:1) were DLBCL, a slight majority (55.6%, 15/27) with activated B-cell like (ABC) and 45% (12/27) with germinal center B-cell like (GCB) immunophenotype. Overall, 40% (24/60) ML were aneuploid mostly (63.0%, 17/27) the DLBCL and TCL (54.5%, 6/11). DNA index (DI) of FC-analyzed ML ranged from 1.103-2.407 (median = 1.51) and most (75.0%) aneuploid cases showed high (>40%) cell proliferation by Ki-67 reactivity. The majority (51.4%, 19/37) of EBER ISH analyzed lymphoma biopsies were positive. Of the serologically tested MLs, 40.0% (14/35) were HIV positive, mostly with high (≥40.0%) Ki-67 reactivity.</p> <p>Conclusions</p> <p>According to the 2001 WHO Classification, most subtypes are represented in Tanzanian ML. Extranodal presentation was common among MNH lymphoma patients who also showed high aneuploidy, tumor proliferation (KI-67) and EBER positivity. DLBCL was frequent and phenotype heterogeneity appeared similar to observations in Western countries suggesting applicability of established intervention approaches. HIV was apparently associated with high ML cell proliferation but extended studies are needed to clarify this.</p

    Viral Oncogene–Induced DNA Damage Response Is Activated in Kaposi Sarcoma Tumorigenesis

    Get PDF
    Kaposi sarcoma is a tumor consisting of Kaposi sarcoma herpesvirus (KSHV)–infected tumor cells that express endothelial cell (EC) markers and viral genes like v-cyclin, vFLIP, and LANA. Despite a strong link between KSHV infection and certain neoplasms, de novo virus infection of human primary cells does not readily lead to cellular transformation. We have studied the consequences of expression of v-cyclin in primary and immortalized human dermal microvascular ECs. We show that v-cyclin, which is a homolog of cellular D-type cyclins, induces replicative stress in ECs, which leads to senescence and activation of the DNA damage response. We find that antiproliferative checkpoints are activated upon KSHV infection of ECs, and in early-stage but not late-stage lesions of clinical Kaposi sarcoma specimens. These are some of the first results suggesting that DNA damage checkpoint response also functions as an anticancer barrier in virally induced cancers

    KSHV-Initiated Notch Activation Leads to Membrane-Type-1 Matrix Metalloproteinase-Dependent Lymphatic Endothelial-to-Mesenchymal Transition

    Get PDF
    SummaryKaposi sarcoma (KS), an angioproliferative disease associated with Kaposi sarcoma herpesvirus (KSHV) infection, harbors a diversity of cell types ranging from endothelial to mesenchymal cells of unclear origin. We developed a three-dimensional cell model for KSHV infection and used it to demonstrate that KSHV induces transcriptional reprogramming of lymphatic endothelial cells to mesenchymal cells via endothelial-to-mesenchymal transition (EndMT). KSHV-induced EndMT was initiated by the viral proteins vFLIP and vGPCR through Notch pathway activation, leading to gain of membrane-type-1 matrix metalloproteinase (MT1-MMP)-dependent invasive properties and concomitant changes in viral gene expression. Mesenchymal markers and MT1-MMP were found codistributed with a KSHV marker in the same cells from primary KS biopsies. Our data explain the heterogeneity of cell types within KS lesions and suggest that KSHV-induced EndMT may contribute to KS development by giving rise to infected, invasive cells while providing the virus a permissive cellular microenvironment for efficient spread

    Nucleophosmin Phosphorylation by v-Cyclin-CDK6 Controls KSHV Latency

    Get PDF
    Nucleophosmin (NPM) is a multifunctional nuclear phosphoprotein and a histone chaperone implicated in chromatin organization and transcription control. Oncogenic Kaposi's sarcoma herpesvirus (KSHV) is the etiological agent of Kaposi's sarcoma, primary effusion lymphoma (PEL) and multicentric Castleman disease (MCD). In the infected host cell KSHV displays two modes of infection, the latency and productive viral replication phases, involving extensive viral DNA replication and gene expression. A sustained balance between latency and reactivation to the productive infection state is essential for viral persistence and KSHV pathogenesis. Our study demonstrates that the KSHV v-cyclin and cellular CDK6 kinase phosphorylate NPM on threonine 199 (Thr199) in de novo and naturally KSHV-infected cells and that NPM is phosphorylated to the same site in primary KS tumors. Furthermore, v-cyclin-mediated phosphorylation of NPM engages the interaction between NPM and the latency-associated nuclear antigen LANA, a KSHV-encoded repressor of viral lytic replication. Strikingly, depletion of NPM in PEL cells leads to viral reactivation, and production of new infectious virus particles. Moreover, the phosphorylation of NPM negatively correlates with the level of spontaneous viral reactivation in PEL cells. This work demonstrates that NPM is a critical regulator of KSHV latency via functional interactions with v-cyclin and LANA
    • …
    corecore