49 research outputs found

    Overexpression of Osmyb4 enhances compatible solute accumulation and increases stress tolerance of arabidopsis thaliana

    Get PDF
    In this paper, we report the metabolic and molecular changes in response to cold and drought induced in Osmyb4 transgenic Arabidopsis thaliana compared with the wildtype (WT). The rice Osmyb4 gene codes for a transcription factor (Myb4) induced by cold treatment and, in Arabidopsis transgenic plants, improves cold and freezing tolerance [Vannini C, Locatelli F, Bracale M, Magnani E, Marsoni M, Osnato M, Mattana M, Baldoni E, Coraggio I (2004) Plant J 37: 115-127]. Here, we report the ability of Myb4 to induce also drought tolerance in Arabidopsis transgenic plants. By the use of nuclear magnetic resonance (NMR) and enzymatic assays, we showed that several compatible solutes (glucose, fructose, sucrose, proline, glycine betaine and sinapoyl malate) accumulate in higher amount in Osmyb4-overexpressing plants with respect to the WT, both under normal and stress conditions. Considering proline, we also found that in transgenic plants the levels of the mRNAs coding for \u3941- pyrroline-5-carboxylate synthase (EC not assigned) and for \u3941- pyrroline-5-carboxylate dehydrogenase (EC 1.5.1.12) were higher and lower, respectively. The constitutive activation of several stress-inducible pathways and different kinetics in the accumulation of several metabolites, in Myb4 transgenic plants, may represent an advantage to prepare plants to face the stress condition. Moreover, these results taken together suggest that Myb4 integrates the activation of multiple components of stress response

    CYP72A67 catalyses a key oxidative step in Medicago truncatula hemolytic saponin biosynthesis

    Get PDF
    In the Medicago genus, triterpenic saponins are bioactive secondary metabolites constitutively synthesized in the aerial and subterranean parts of plants via the isoprenoid pathway. Exploitation of saponins as pharmaceutics, agrochemicals and in the food and cosmetic industries has raised interest in identifying the enzymes involved in their synthesis. We have identified a cytochrome P450 (CYP72A67) involved in hemolytic sapogenin biosynthesis by a reverse genetic TILLING approach in a Medicago truncatula ethylmethanesulfonate (EMS) mutagenized collection. Genetic and biochemical analyses, mutant complementation, and expression of the gene in a microsome yeast system showed that CYP72A67 is responsible for hydroxylation at the C-2 position downstreamof oleanolic acid synthesis. The affinity of CYP72A67 for substrates with different substitutions at multiple carbon positions was investigated in the same in vitro yeast system, and in relation to two other CYP450s (CYP72A68) responsible for the production of medicagenic acid, the main sapogenin in M. truncatula leaves and roots. Full sib mutant and wild-type plants were compared for their sapogenin profile, expression patterns of the genes involved in sapogenin synthesis, and response to inoculation with Sinorhizobium meliloti. The results obtained allowed us to revise the hemolytic sapogenin pathway in M. truncatula and contribute to highlighting the tissue specificities (leaves/roots) of sapogenin synthesis

    Microalgal biostimulants and biofertilisers in crop productions

    Get PDF
    Microalgae are attracting the interest of agrochemical industries and farmers, due to their biostimulant and biofertiliser properties. Microalgal biostimulants (MBS) and biofertilisers (MBF) might be used in crop production to increase agricultural sustainability. Biostimulants are products derived from organic material that, applied in small quantities, are able to stimulate the growth and development of several crops under both optimal and stressful conditions. Biofertilisers are products containing living microorganisms or natural substances that are able to improve chemical and biological soil properties, stimulating plant growth, and restoring soil fertility. This review is aimed at reporting developments in the processing of MBS and MBF, summarising the biologically-active compounds, and examining the researches supporting the use of MBS and MBF for managing productivity and abiotic stresses in crop productions. Microalgae are used in agriculture in different applications, such as amendment, foliar application, and seed priming. MBS and MBF might be applied as an alternative technique, or used in conjunction with synthetic fertilisers, crop protection products and plant growth regulators, generating multiple benefits, such as enhanced rooting, higher crop yields and quality and tolerance to drought and salt. Worldwide, MBS and MBF remain largely unexploited, such that this study highlights some of the current researches and future development priorities
    corecore