356 research outputs found

    Estrogens: Two nuclear receptors, multiple possibilities

    Full text link
    Much is known about estrogen action in experimental animal models and in human physiology. This article reviews the mechanisms of estrogen activity in animals and humans and the role of its two receptors α and β in terms of structure and mechanisms of action in various tissues in health and in relationship with human pathologies (e.g., osteoporosis). Recently, the spectrum of clinical pictures of estrogen resistance caused by estrogen receptors gene variants has been widened by our description of a woman with β-receptor defect, which could be added to the already known descriptions of α-receptor defect in women and men and β-receptor defect in men. The essential role of the β-receptor in the development of the gonad stands out. We summarize the clinical pictures due to estrogen resistance in men and women and focus on long-term follow-up of two women, one with α- and the other with β-receptor resistance. Some open questions remain on the complex interactions between the two receptors on bone metabolism and hypothalamus-pituitary-gonadal axis, which need further deepening and research

    Genome-wide identification of CBX2 targets: insights in the human sex development network

    Get PDF
    CBX2 (Chromobox homolog 2) is a chromatin modifier that plays an important role in sexual development and its disorders (disorders of sex development, DSD), yet the exact rank and function of human CBX2 in this pathway remains unclear. Here, we performed large-scale mapping and analysis of in vivo target loci of the protein CBX2 in Sertoli-like NT-2D1cells, using the DNA adenine methyltransferase (DamID) technique. We identified close to 1600 direct targets for CBX2. Intriguingly, validation of selected candidate genes using qRT-PCR in cells overexpressing CBX2 or in which CBX2 has been knocked down indicated that several CBX2-responsive genes encode proteins that are involved in DSD. We further validated these effects on the candidate genes using a mutated CBX2 causing DSD in human patient. Overall, our findings suggest that CBX2 role in the sex development cascade is to stimulate the male pathway and concurrently inhibit the female pathway. These data provide fundamental insights into potential etiology of DSD

    Defects of steroidogenesis

    Get PDF
    In the biosynthesis of steroid hormones the neutral lipid cholesterol, a normal constituent of lipid bilayers is transformed via a series of hydroxylation, oxidation, and reduction steps into a vast array of biologically active compounds: mineralocorticoids, glucocorticoids, and sex hormones. Glucocorticoids regulate many aspects of metabolism and immune function, whereas mineralocorticoids help maintain blood volume and control renal excretion of electrolytes. Sex hormones are essential for sex differentiation in male and support reproduction. They include androgens, estrogens, and progestins. A block in the pathway of steroid biosynthesis leads to the lack of hormones downstream and accumulation of the upstream compounds that can activate other members of the steroid receptor family. This review deals with the clinical consequences of these block

    The transcriptional regulator CBX2 and ovarian function: A whole genome and whole transcriptome approach

    Get PDF
    The chromobox homolog 2 (CBX2) was found to be important for human testis development, but its role in the human ovary remains elusive. We conducted a genome-wide analysis based on DNA adenine methyltransferase identification (DamID) and RNA sequencing strategies to investigate CBX2 in the human granulosa cells. Functional analysis revealed that CBX2 was upstream of genes contributing to ovarian function like folliculogenesis and steroidogenesis (i.e. ESR1, NRG1, AKR1C1, PTGER2, BMP15, BMP2, FSHR and NTRK1/2). We identified CBX2 regulated genes associated with polycystic ovary syndrome (PCOS) such as TGFβ, MAP3K15 and DKK1, as well as genes implicated in premature ovarian failure (POF) (i.e. POF1B, BMP15 and HOXA13) and the pituitary deficiency (i.e. LHX4 and KISS1). Our study provided an excellent opportunity to identify genes surrounding CBX2 in the ovary and might contribute to the understanding of ovarian physiopathology causing infertility in women

    Defects of steroidogenesis

    Full text link
    In the biosynthesis of steroid hormones the neutral lipid cholesterol, a normal constituent of lipid bilayers is transformed via a series of hydroxylation, oxidation, and reduction steps into a vast array of biologically active compounds: mineralocorticoids, glucocorticoids, and sex hormones. Glucocorticoids regulate many aspects of metabolism and immune function, whereas mineralocorticoids help maintain blood volume and control renal excretion of electrolytes. Sex hormones are essential for sex differentiation in male and support reproduction. They include androgens, estrogens, and progestins. A block in the pathway of steroid biosynthesis leads to the lack of hormones downstream and accumulation of the upstream compounds that can activate other members of the steroid receptor family. This review deals with the clinical consequences of these blocks

    Association of childhood type 1 diabetes mellitus with a variant of PAX4: possible link to beta cell regenerative capacity

    Get PDF
    Aims/hypothesis: Loss of pancreatic beta cells is the crucial event in the development of type 1 diabetes. It is the result of an imbalance between autoimmune destruction and insufficient regeneration of islet cells. To study the role of islet cell regeneration in the pathogenesis of type 1 diabetes, we focused on PAX4, a paired homeodomain transcriptional repressor that is involved in islet cell growth. Methods: The study included 379 diabetic children and 1,070 controls from two distinct populations, and a cohort of children who had not developed type 1 diabetes, despite the presence of islet cell antibodies. Genomic DNA analysis of PAX4 was carried out via direct sequencing of PCR-amplified fragments and allelic discrimination. We compared the transrepression potential of the PAX4 variants in βTC3 cells and analysed their influence on beta cell growth. Results: The type 1 diabetic subjects are different from the normal individuals in terms of the genotype distribution of the A1168C single nucleotide polymorphism in PAX4. The C/C genotype is frequent among type 1 diabetic children (73%) and rare among the control population (32%). Conversely, the A/C genotype is prevalent among control subjects (62%) and antibody-positive children without type 1 diabetes (73.6%), but uncommon among subjects with type 1 diabetes (17.5%). The combination of PAX4A and PAX4C is functionally more active than PAX4C alone (the ‘diabetic' variant). Beta cells expressing PAX4A and PAX4C efficiently proliferate when stimulated with glucose, whereas cells expressing the PAX4C variant alone do not. Conclusions/interpretation: We have identified a link between beta cell regenerative capacity and susceptibility to type 1 diabetes. This finding could explain the fact that not all of the individuals who develop autoimmunity against beta cells actually contract the disease. The C/C genotype of the A1168C polymorphism in PAX4 can be viewed as a predisposition marker that can help to detect individuals prone to develop type 1 diabete

    Endocrine and molecular investigations in a cohort of 25 adolescent males with prominent/persistent pubertal gynecomastia

    Get PDF
    Pubertal gynecomastia is a common condition observed in up to 65% of adolescent males. It is usually idiopathic and tends to regress within 1–2 years. In this descriptive cross-sectional study, we investigated 25 adolescent males with prominent (>B3) and/or persistent (>2 years) pubertal gynecomastia (P/PPG) to determine whether a hormonal/genetic defect might underline this condition. Endocrine investigation revealed the absence of hormonal disturbance for 18 boys (72%). Three patients presented Klinefelter syndrome and three a partial androgen insensitivity syndrome (PAIS) as a result of p.Ala646Asp and p.Ala45Gly mutations of the androgen receptor gene. The last patient showed a 17α-hydroxylase/17,20-lyase deficiency as a result of a compound heterozygous mutation of the CYP17A1 gene leading to p.Pro35Thr(P35T) and p.Arg239Stop(R239X) in the P450c17 protein. Enzymatic activity was analyzed: the mutant protein bearing the premature stop codon R239X showed a complete loss of 17α-hydroxylase and 17,20-lyase activity. The mutant P35T seemed to retain 15–20% of 17α-hydroxylase and about 8–10% of 17,20-lyase activity. This work demonstrates that P/PPG had an endocrine/genetic cause in 28% of our cases. PAIS may be expressed only by isolated gynecomastia as well as by 17α-hydroxylase/17,20-lyase deficiency. Isolated P/PPG is not always a ‘physiological’ condition and should thus be investigated through adequate endocrine and genetic investigations, even though larger studies are needed to better determine the real prevalence of genetic defects in such patients
    • …
    corecore