1,716 research outputs found

    Towards the de\ufb01nition of a new river water line for North-Eastern Italy

    Get PDF
    In the last decades there has been active research on the relation between the stable isotopic composition of precipitation and climate variations at the regional scale. Particularly, the analysis of meteoric water lines is an important tool to understand climate processes at the local/regional scale. In this view, considering the strict relation between the isotopic composition of river water and the one of precipitation, surface running waters (i.e. rivers, streams, creeks) and their catchments can be considered as \u201cnatural pluviometers\u201d. In this study the analysis of the isotopic composition of surface waters was carried out in order to develop a new meteoric water line of North-East Italy. The dataset includes samples collected between 2012 and 2016 from i) small catchments, typically < 30 Km2 (Ressi Creek, Bridge Creek and Vauz Creek, Noce Bianco stream, Posina river), where it is easier to relate the stream water isotopic composition to distinct meteoric end-members (e.g., rainfall,snowmeltandglaciermelt);andii)largebasins(Adige:12,100Km2 andPo:71,000Km2)whichintegrate multiple components giving information at the regional scale. Preliminary results show that distinct river water lines are characterized by different slopes and intercepts. The slopes vary between 5.46 and 8.02, whereas the intercepts vary between -9.15 and 11.82. In particular river meteoricwaterlinesde\ufb01nedforRessiCreek(\u3b4Dh\uaf7.48 \u3b418O+10.27,n=831;R2 =0.88)andNoceBiancostream (\u3b4Dh\uaf7.66 \u3b418O+7.27, n=484; R2 = 0.95) con\ufb01rm the similarity with the meteoric line developed for northern Italy. On the contrary, the isotopic composition of streams in small (< 10 Km2) snow-dominated catchments (Bridge Creek and Vauz Creek) deviate from the North Italy meteoric line due to the important contribution of snowmelt that is typically characterized by a different isotopic signature compared to the precipitation input. River water lines for large basins (Po and Adige) are characterized by slopes and intercepts in the range of the Global Meteoric Water Line. Finally, it is important to emphasize that the current dataset, progressively updated, represents a snapshot of a short monitoring period and that future investigations are useful to highlight seasonal variations and on-going environmental changes

    Coleção históricas: a manifestação de ideias feministas por meio trabalhos de bordados manuais

    Get PDF
    Trabalho de Conclusão de Curso apresentado para obtenção do grau de Bacharel no Curso de Tecnologia em Design de Moda da Universidade do Extremo Sul Catarinense - UNESC.O presente trabalho procura investigar como as feministas manifestam seus princípios através do bordado feito à mão. É caracterizada pelo processo de ressignificação de costumes e itens tradicionais, trazendo uma analogia entre o bordado contemporâneo e o bordado tradicional. Passando pelos conceitos do feminismo e pela história desse movimento e pesquisando como artistas e bordadeiras usam essa arte como uma forma de autoexpressão, utilizando os principais autores e autoras como Hooks (2018), Alves e Pitanguy (2017), Kanan (2000) e Alcântara e Brandelero (2019). A partir do estudo e análise de temas, o projeto denominado “históricas” originou pelos protestos marcantes de mulheres ao longo do tempo, sendo representadas em artigos para uso doméstico. Este trabalho foi dedicado à apresentação, descrição e análise do bordado como eixo das relações sociais. Realizado por meio dos métodos científicos de pesquisa exploratória, descritiva (GIL,2002), qualitativa e bibliográfica (LAKATOS; MARCONI, 2003)

    Health monitoring of an ancient tree using ground penetrating radar – investigation of the tree root system and soil interaction

    Get PDF
    The sensibility towards environmental issues along with the attention on preserving natural heritage, especially ancient trees and rare plants, has greatly increased, and the management and the control of the forestall heritage and the floral system has become accordingly a high-priority objective to achieve. One of the main factors of tree decay which originally gained public attention is the presence of unknown pathogens carried along by the wind, which can lead to epidemic phenomena and often to a quick death of entire forests. In such an emergency situation, two main approaches can be followed, namely, i) active measures (i.e. the avoidance of any contact between the pathogenic spores and the trees by using bio-security measures) and ii) passive measures (i.e. the application of policies for the control and the management of the forestall heritage aimed at identifying the early-stage symptoms of the disease). Since the latest approach is based on the monitoring of living trees, invasive methods of health assessment like cutting off branches or incremental coring are increasingly discouraged, and non-destructive evaluation proves to be the only option to undertake. The applications of non-destructive testing (NDT) techniques in forestry sciences are often self-standing and not integrated with one another. This is often due to a lack of knowledge from the NDT users towards the physics and the bio-chemical processes which mainly govern the life cycle of trees and plants. Such an issue is emphasized by the evident complexity of the plant and trunk systems themselves. Notwithstanding this, the ground-penetrating radar (GPR) technique has proved to be one of the most effective, due to its high versatility, rapidity in collecting data and the provision of reliable results at relatively limited costs. The use of GPR can provide invaluable information about the effective tree trunk assessment and appraisals, tree roots mapping, soil interaction with tree and plants. In addition, the use of simulation can be a supporting tool for the development of a clear understanding of the decay processes in trees. In this study, a demonstration of the GPR potential in the health monitoring of an ancient tree has been given. The main objectives of the research were to provide an effective mapping of the tree roots as well as reliable simulation scenarios representing a variety of possible internal defects in terms of shape and formation. To these purposes, the soil around a 100-years old fir tree, with a trunk circumference of 3.40 m and an average radius of 0.55 m, was investigated. Nine radial scans, 0.30 m spaced each to one another, were carried out all around the tree circumference starting from 0.50 m the outer surface of the bark. A ground-coupled multi-frequency GPR system equipped with 600 MHz and 1600 MHz central frequency antennas was used for testing purposes. In order to reach the maximum penetration depth of the root system, only the 600 MHz frequency was considered for data processing purposes. After the application of a dedicated signal processing scheme, it was possible to produce a tomographic map of amplitudes covering a swept circle with an outer radius of 3.45 m and an inner radius of 1.05 m up to a maximum depth of 1.56 m. By using a set of specially developed algorithms it was possible to extract signal amplitude information reliably related to the position of the tree roots under the soil. In addition to the above objective, finite-difference time-domain (FDTD) simulations of the electromagnetic field propagation through the cross section of a trunk were carried out. To this purpose, the numerical simulator package gprMax 2D was used. The freeware tool E2GPR aided the design of the gprMax models and their distributed execution on multicore machines. The dimensions and the dielectric properties of the simulated trunk were consistent with the investigated fir tree (actual data collected). Furthermore, a variety of defects representing cavities created due to decay was simulated. The results from the simulations demonstrated significant potential for the interpretation of complex decay phenomena within the trunk as well as for mapping and comparison of the actual field data

    Estimation of canopy attributes in beech forests using true colourdigital images from a small fixed-wing UAV

    Get PDF
    Accurate estimates of forest canopy are essential for the characterization of forest ecosystems. Remotely-sensed techniques provide a unique way to obtain estimates over spatially extensive areas, but their application is limited by the spectral and temporal resolution available from these systems, which is often not suited to meet regional or local objectives. The use of unmanned aerial vehicles (UAV) as remote sensing platforms has recently gained increasing attention, but their applications in forestry are still at an experimental stage. In this study we described a methodology to obtain rapid and reliable estimates of forest canopy from a small UAV equipped with a commercial RGB camera. The red, green and blue digital numbers were converted to the green leaf algorithm (GLA)and to the CIE L∗a∗b∗colour space to obtaine stimates of canopy cover, foliage clumping and leaf area index (L) from aerial images. Canopy attributes were compared with in situ estimates obtained from two digital canopy photographic techniques (cover and fisheye photography).The method was tested in beech forests. UAV images accurately quantified canopy cover even in very dense stand conditions, despite a tendency to not detecting small within-crown gaps in aerial images, leading to a measurement of a quantity much closer to crown cover estimated from in situ cover photography. Estimates of L from UAV images significantly agreed with that obtained from fisheye images, but the accuracy of UAV estimates is influenced by the appropriate assumption of leaf angle distribution. We concluded that true colour UAV images can be effectively used to obtain rapid, cheap and meaningful estimates of forest canopy attributes at medium-large scales. UAV can combine the advantage of high resolution imagery with quick turnaround series, being therefore suitable for routine forest stand monitoring and real-time applications.L'articolo è disponibile sul sito dell'editore www.elsevier.com/locate/ja

    A simulation-based approach for railway applications using GPR

    Get PDF
    In this work a numerical model capable to predict the electromagnetic response of railway ballast aggregates under different physical conditions has been calibrated and validated by a simulation-based approach. The ballast model is based on the main physical and geometrical properties of its constituent material and it is generated by means of a random-sequential absorption (RSA) approach. A finite-difference time-domain (FDTD) simulator is then employed to calculate the ground-penetrating radar (GPR) signal response to the scenario. The calibration of the model has been performed by taking into account the main physical properties and the grain size characteristics of both the reference ballast material and a fine-grained pollutant material, namely, an A4 soil type material, according to the AASHTO soil classification. The synthetic GPR response has been generated by using the gprMax freeware simulator. Several scenarios have been considered, which in turn were reproduced in laboratory environment and used for the validation of the model. Promising results have demonstrated the high potential of such approach in characterizing the simulated response of complex coarse-grained heterogeneous materials

    Educação Ambiental: um direito da Educação Infantil

    Get PDF
    Neste artigo discorremos sobre o direito das crianças à Educação Ambiental (EA) emcreches e pré-escolas. Para tanto, apresentamos de forma sucinta a história da EA. Emseguida analisamos o que diz a Lei de Diretrizes e Bases da Educação Brasileira e odocumento lançado no ano de 2017 que institui a Base Nacional Curricular Comum, voltadospara a Educação Infantil (EI). Entendendo que há distintas teorias e práticas de EA, nessetrabalho trouxemos algumas concepções da EA crítica. Para oferecer subsídios às nossasreflexões, nos apoiamos em pensar a EA na perspectiva de articular a dimensão de valores, deconhecimentos e de participação política das crianças

    Advanced lung cancer inflammation index and its prognostic value in HPV-negative head and neck squamous cell carcinoma: a multicentre study

    Get PDF
    Purpose: The aim of this study is to evaluate the prognostic value of pre-treatment advanced lung cancer inflammation index (ALI) in patients with HPV-negative HNSCC undergoing up-front surgical treatment. Methods: The present multi-centre, retrospective study was performed in a consecutive cohort of patients who underwent upfront surgery with or without adjuvant (chemo)-radiotherapy for head and neck squamous cell carcinoma (HNSCC). Patients were stratified by ALI, and survival outcomes were compared between groups. In addition, the prognostic value of ALI was compared with two other indices, the prognostic nutritional index (PNI) and systemic inflammatory index (SIM). Results: Two hundred twenty-three patients met the inclusion criteria (151 male and 72 female). Overall and progression-free survival were significantly predicted by ALI &lt; 20.4 (HR 3.23, CI 1.51–6.90 for PFS and HR 3.41, CI 1.47–7.91 for OS). Similarly, PNI &lt; 40.5 (HR = 2.43, 95% CI: 1.31–4.51 for PFS and HR = 2.40, 95% CI: 1.19–4.82 for OS) and SIM &gt; 2.5 (HR = 2.51, 95% CI: 1.23–5.10 for PFS and HR = 2.60, 95% CI: 1.19–5.67 for OS) were found to be significant predictors. Among the three indices, ALI &lt; 20.4 identified the patients with the worst 5-year outcomes. Moreover, patients with a combination of low PNI and low ALI resulted to be a better predictor of progression (HR = 5.26, 95% CI: 2.01–13.73) and death (HR = 5.68, 95% CI: 1.92–16.79) than low ALI and low PNI considered alone. Conclusions: Our results support the use of pre-treatment ALI, an easily measurable inflammatory/nutritional index, in daily clinical practice to improve prognostic stratification in surgically treated HPV-negative HNSCC
    corecore