2 research outputs found

    On knottings in the physical Hilbert space of LQG as given by the EPRL model

    Full text link
    We consider the EPRL spin foam amplitude for arbitrary embedded two-complexes. Choosing a definition of the face- and edge amplitudes which lead to spin foam amplitudes invariant under trivial subdivisions, we investigate invariance properties of the amplitude under consistent deformations, which are deformations of the embedded two-complex where faces are allowed to pass through each other in a controlled way. Using this surprising invariance, we are able to show that in the physical Hilbert space as defined by the sum over all spin foams contains no knotting classes of graphs anymore.Comment: 22 pages, 14 figure

    Physical boundary Hilbert space and volume operator in the Lorentzian new spin-foam theory

    Full text link
    A covariant spin-foam formulation of quantum gravity has been recently developed, characterized by a kinematics which appears to match well the one of canonical loop quantum gravity. In this paper we reconsider the implementation of the constraints that defines the model. We define in a simple way the boundary Hilbert space of the theory, introducing a slight modification of the embedding of the SU(2) representations into the SL(2,C) ones. We then show directly that all constraints vanish on this space in a weak sense. The vanishing is exact (and not just in the large quantum number limit.) We also generalize the definition of the volume operator in the spinfoam model to the Lorentzian signature, and show that it matches the one of loop quantum gravity, as does in the Euclidean case.Comment: 11 page
    corecore