139 research outputs found

    High Meiofaunal and Nematodes Diversity around Mesophotic Coral Oases in the Mediterranean Sea

    Get PDF
    Although the mesophotic zone of the Mediterranean Sea has been poorly investigated, there is an increasing awareness about its ecological importance for its biodiversity, as fish nursery and for the recruitment of shallow water species. Along with coastal rocky cliffs, isolated coralligenous concretions emerging from muddy bottoms are typical structures of the Mediterranean Sea mesophotic zone. Coralligenous concretions at mesophotic depths in the South Tyrrhenian Sea were investigated to assess the role of these coralligenous oases in relation to the biodiversity of surrounding soft sediments. We show here that the complex structures of the coralligenous concretions at ca. 110 m depth influence the trophic conditions, the biodiversity and assemblage composition in the surrounding sediments even at considerable distances. Coral concretions not only represent deep oases of coral biodiversity but they also promote a higher biodiversity of the fauna inhabiting the surrounding soft sediments. Using the biodiversity of nematodes as a proxy of the total benthic biodiversity, a high turnover biodiversity within a 200 m distance from the coralligenous concretions was observed. Such turnover is even more evident when only rare taxa are considered and seems related to specific trophic conditions, which are influenced by the presence of the coralligenous structures. The presence of a high topographic complexity and the trophic enrichment make these habitats highly biodiverse, nowadays endangered by human activities (such as exploitation of commercial species such as Corallium rubrum, or trawling fisheries, which directly causes habitat destruction or indirectly causes modification in the sedimentation and re-suspension rates). We stress that the protection of the coralligenous sea concretions is a priority for future conservation policies at the scale of large marine ecosystems and that a complete census of these mesophotic oases of biodiversity should be a priority for future investigations in the Mediterranean Sea

    Nematode diversity patterns at different spatial scales in bathyal sediments of the Mediterranean Sea

    Get PDF
    Understanding biodiversity patterns and how they are driven at different spatial scales is a crucial issue in eco- logical studies. This is particularly evident for the deep sea, the largest biome of the biosphere, where information on the scales of spatial variation is very scant. Here, we investigated deep-sea nematodes species richness, turnover and func- tional diversity, and life strategies at different spatial scales (from local to macro-regional) to identify the factors that shape regional (γ) and macro-regional (ε) deep-sea diver- sity. This study was conducted in several deep-sea habitats (canyons, open slopes, deep-water corals, and bathyal plains) over > 2000 km across the whole Mediterranean Basin, at a bathymetric range comprised between ca. 600 and 1300 m. Our results indicate that the patterns of local (α) diversity across the deep Mediterranean follow the gradients of the trophic conditions, which decrease from the western to the eastern basins. For all of the sites and habitats, the α diversity is generally low. Conversely, the turnover diversity changes significantly among habitats (β diversity) and between re- gions (δ diversity), showing values of dissimilarity (based on species presence/absence matrixes) between 59 and 90 % for β diversity and between 81 and 89 % for δ diversity. This suggests that patterns and values of γ and ε diversities in the deep Mediterranean Sea are related to turnover diversity among habitats and between regions (β and δ diversities), rather than to the local biodiversity (α diversity). These re- sults indicate also that the differences in β and δ diversi- ties are even more important than those in α diversity for the comprehension of the drivers of biodiversity in the deep Mediterranean Sea. We conclude that the presence of differ- ent habitats and gradients in environmental conditions, by promoting a high turnover diversity across the Mediterranean Sea, may play a crucial role in the levels of γ diversity of deep-sea nematodes

    Sedimentary organic matter, prokaryotes, and meiofauna across a river-lagoon-sea gradient

    Get PDF
    In benthic ecosystems, organic matter (OM), prokaryotes, and meiofauna represent a functional bottleneck in the energy transfer towards higher trophic levels and all respond to a variety of natural and anthropogenic disturbances. The relationships between OM and the different components of benthic communities are influenced by multiple environmental variables, which can vary across different habitats. However, analyses of these relationships have mostly been conducted by considering the different habitats separately, even though freshwater, transitional, and marine ecosystems, physically linked to each other, are not worlds apart. Here, we investigated the quantity and nutritional quality of sedimentary OM, along with the prokaryotic and meiofauna abundance, biomass, and biodiversity, in two sampling periods, corresponding to high vs. low freshwater inputs to the sea, along a river-to-sea transect. The highest values of sedimentary organic loads and their nutritional quality, prokaryotic and meiofaunal abundance, and biomass were consistently observed in lagoon systems. Differences in the prokaryotic Operational Taxonomic Units (OTUs) and meiofaunal taxonomic composition, rather than changes in the richness of taxa, were observed among the three habitats and, in each habitat, between sampling periods. Such differences were driven by either physical or trophic variables, though with differences between seasons. Overall, our results indicate that the apparent positive relationship between sedimentary OM, prokaryote and meiofaunal abundance, and biomass across the river-lagoon-sea transect under scrutiny is more the result of a pattern of specifically adapted prokaryotic and meiofaunal communities to different habitats, rather than an actually positive 'response' to OM enrichment. We conclude that the synoptic analysis of prokaryotes and meiofauna can provide useful information on the relative effect of organic enrichment and environmental settings across gradients of environmental continuums, including rivers, lagoons, and marine coastal ecosystems

    Red coral extinction risk enhanced by ocean acidification

    Get PDF
    The red coral Corallium rubrum is a habitat-forming species with a prominent and structural role in mesophotic habitats, which sustains biodiversity hotspots. This precious coral is threatened by both over-exploitation and temperature driven mass mortality events. We report here that biocalcification, growth rates and polyps’ (feeding) activity of Corallium rubrum are significantly reduced at pCO2 scenarios predicted for the end of this century (0.2 pH decrease). Since C. rubrum is a long-living species (.200 years), our results suggest that ocean acidification predicted for 2100 will significantly increases the risk of extinction of present populations. Given the functional role of these corals in the mesophotic zone, we predict that ocean acidification might have cascading effects on the functioning of these habitats worldwid

    Bioavailability of sinking organic matter in the Blanes canyon and the adjacent open slope (NW Mediterranean Sea)

    Get PDF
    Submarine canyons are sites of intense energy and material exchange between the shelf and the deep adjacent basins. To test the hypothesis that active submarine canyons represent preferential conduits of available food for the deep-sea benthos, two mooring lines were deployed at 1200 m depth from November 2008 to November 2009 inside the Blanes canyon and on the adjacent open slope (Catalan Margin, NW Mediterranean Sea). We investigated the fluxes, biochemical composition and food quality of sinking organic carbon (OC). OC fluxes in the canyon and the open slope varied among sampling periods, though not onsistently in the two sites. In particular, while in the open slope the highest OC fluxes were observed in August 2009, in the canyon the highest OC fluxes occurred in April-May 2009. For almost the entire study period, the OC fluxes in the canyon were significantly higher than those in the open slope, whereas OC contents of sinking particles collected in the open slope were consistently higher than those in the canyon. This result confirms that submarine canyons are effective conveyors of OC to the deep sea. Particles transferred to the deep sea floor through the canyons are predominantly of inorganic origin, significantly higher than that reaching the open slope at a similar water depth. Using multivariate statistical tests, two major clusters of sampling periods were identified: one in the canyon that grouped trap samples collected in December 2008, oncurrently with the occurrence of a major storm at the sea surface, and associated with increased fluxes of nutritionally available particles from the upper shelf. Another cluster grouped samples from both the canyon and the open slope collected in March 2009, concurrently with the occurrence of the seasonal phytoplankton bloom at the sea surface, and associated with increased fluxes of total phytopigments. Our results confirm the key ecological role of submarine canyons for the functioning of deep-sea ecosystems, and highlight the importance of canyons in linking episodic storms and primary production occurring at the sea surface to the deep sea floor

    Fish-farm impact on metazoan meiofauna in the Mediterranean Sea: Analysis of regional vs. habitat effects.

    Get PDF
    The worldwide exponential growth of off-shore mariculture is raising severe concerns about the impacts of this industry on marine habitats and their biodiversity. We investigated the metazoan meiofaunal response to fish-farm impact in four regions of the Mediterranean Sea. Meiofaunal assemblages were investigated in two habitats (seagrass meadows of Posidonia oceanica and non-vegetated soft bottoms) comparing sites receiving faeces and uneaten food pellets from fish farms to control sites. We report here that, consistently across different regions, the meiofaunal abundance typically responded positively to fish-farm effluents. Biodeposition caused also significant changes in assemblage structure and the reduction in the richness of higher meiofaunal taxa, but the multivariate analysis of variance revealed that the effects were region- and habitat-specific. In non-vegetated systems, three of the four regions investigated displayed significant effects of the fish farms on richness of meiofaunal taxa. In vegetated habitats, meiofauna did not respond to biodeposition (except in one region), suggesting that seagrass meadows can mask the effects of fish-farm effluents on benthic biodiversity. We conclude that different indicators of fish-farm impact are needed in vegetated and non-vegetated benthic system

    Major consequences of an intense dense shelf water cascading event on deep-sea benthic trophic condtions and meiofaunal biodiversity

    Get PDF
    Numerous submarine canyons around the world are preferential conduits for episodic dense shelf water cas- cading (DSWC), which quickly modifies physical and chem- ical ambient conditions while transporting large amounts of material towards the base of slope and basin. Observations conducted during the last 20 yr in the Lacaze-Duthiers and Cap de Creus canyons (Gulf of Lion, NW Mediterranean Sea) report several intense DSWC events. The effects of DSWC on deep-sea ecosystems are almost unknown. To in- vestigate the effects of these episodic events, we analysed changes in the meiofaunal biodiversity inside and outside the canyon. Sediment samples were collected at depths varying from ca. 1000 to >2100m in May 2004 (before a major event), April 2005 (during a major cascading event) and in October 2005, August 2006, April 2008 and April 2009 (af- ter a major event). We report here that the late winter–early spring 2005 cascading led to a reduction of the organic mat- ter contents in canyon floor sediments down to 1800 m depth, whereas surface sediments at about 2200 m depth showed an increase. Our findings suggest that the nutritional material re- moved from the shallower continental shelf, canyon floor and flanks, and also the adjacent open slope was rapidly trans- ported to the deep margin. During the cascading event the meiofaunal abundance and biodiversity in the studied deep- sea sediments were significantly lower than after the event. Benthic assemblages during the cascading were significantly different from those in all other sampling periods in both the canyon and deep margin. After only six months from the cessation of the cascading, benthic assemblages in the impacted sediments were again similar to those observed in other sampling periods, thus illustrating a quick recovery. Since the present climate change is expected to increase the intensity and frequency of these episodic events, we anticipate that they will increasingly affect benthic bathyal ecosys- tems, which may eventually challenge their resilience

    The Paradox of an Unpolluted Coastal Site Facing a Chronically Contaminated Industrial Area

    Get PDF
    none13noPresent and past industrial activities in coastal areas have left us a legacy of contamination and habitat degradation with potential implications for human health. Here, we investigated a coastal marine area enclosed in a Site of National Interest (SNI) of the central-western Adriatic (Mediterranean Sea), where priority actions of environmental remediation are required by governmental laws due the high environmental and human risk, and that is off-limits to any human activity since 2002. In particular, our investigation was focused on an area located in front of a chemical industry dismissed more than 3 decades ago. We report that the concentrations of heavy-metal and organic contaminants in the investigated sediments were generally lower than those expected to induce detrimental biological effects. Meiofaunal abundance, biomass and community structure changed among stations, but regardless of the distance from the abandoned industrial plant. Taxa richness within the SNI did not change significantly compared to the controls and the lack of some taxa in the SNI transects was not due to the contamination of the SNI area. The results of this study suggest a natural recovery of the marine area over 2 decades of restrictions on human activities, including fishing and shipping bans. If the hypothesis of the natural recovery of this SNI will be further confirmed by other studies, the plans for the identification and monitoring of the most polluted areas in Italy should necessarily be redefined also in the light of the Water Framework, the Marine Strategy Framework and the Environmental Quality Standard Directives.openCorinaldesi C.; Bianchelli S.; Rastelli E.; Varrella S.; Canensi S.; Gambi C.; Lo Martire M.; Musco L.; Bertocci I.; Fanelli E.; Lucia G.; Simoncini N.; Dell'Anno A.Corinaldesi, C.; Bianchelli, S.; Rastelli, E.; Varrella, S.; Canensi, S.; Gambi, C.; Lo Martire, M.; Musco, L.; Bertocci, I.; Fanelli, E.; Lucia, G.; Simoncini, N.; Dell'Anno, A

    Major consequences of an intense dense shelf water cascading event on deep-sea benthic trophic conditions and meiofaunal biodiversity

    Get PDF
    Numerous submarine canyons around the world are preferential conduits for episodic dense shelf water cascading (DSWC), which quickly modifies physical and chemical ambient conditions while transporting large amounts of material towards the base of slope and basin. Observations conducted during the last 20 yr in the Lacaze-Duthiers and Cap de Creus canyons (Gulf of Lion, NW Mediterranean Sea) report several intense DSWC events. The effects of DSWC on deep-sea ecosystems are almost unknown. To investigate the effects of these episodic events, we analysed changes in the meiofaunal biodiversity inside and outside the canyon. Sediment samples were collected at depths varying from ca. 1000 to > 2100 m in May 2004 (before a major event), April 2005 (during a major cascading event) and in October 2005, August 2006, April 2008 and April 2009 (after a major event). We report here that the late winter-early spring 2005 cascading led to a reduction of the organic matter contents in canyon floor sediments down to 1800 m depth, whereas surface sediments at about 2200 m depth showed an increase. Our findings suggest that the nutritional material removed from the shallower continental shelf, canyon floor and flanks, and also the adjacent open slope was rapidly transported to the deep margin. During the cascading event the meiofaunal abundance and biodiversity in the studied deep-sea sediments were significantly lower than after the event. Benthic assemblages during the cascading were significantly different from those in all other sampling periods in both the canyon and deep margin. After only six months from the cessation of the cascading, benthic assemblages in the impacted sediments were again similar to those observed in other sampling periods, thus illustrating a quick recovery. Since the present climate change is expected to increase the intensity and frequency of these episodic events, we anticipate that they will increasingly affect benthic bathyal ecosystems, which may eventually challenge their resilience

    Effects of Natural and Anthropogenic Stressors on Fucalean Brown Seaweeds Across Different Spatial Scales in the Mediterranean Sea

    Get PDF
    Algal habitat-forming forests composed of fucalean brown seaweeds (Cystoseira, Ericaria, and Gongolaria) have severely declined along the Mediterranean coasts, endangering the maintenance of essential ecosystem services. Numerous factors determine the loss of these assemblages and operate at different spatial scales, which must be identified to plan conservation and restoration actions. To explore the critical stressors (natural and anthropogenic) that may cause habitat degradation, we investigated (a) the patterns of variability of fucalean forests in percentage cover (abundance) at three spatial scales (location, forest, transect) by visual estimates and or photographic sampling to identify relevant spatial scales of variation, (b) the correlation between semi-quantitative anthropogenic stressors, individually or cumulatively (MA-LUSI index), including natural stressors (confinement, sea urchin grazing), and percentage cover of functional groups (perennial, semi-perennial) at forest spatial scale. The results showed that impacts from mariculture and urbanization seem to be the main stressors affecting habitat-forming species. In particular, while mariculture, urbanization, and cumulative anthropogenic stress negatively correlated with the percentage cover of perennial fucalean species, the same stressors were positively correlated with the percentage cover of the semi-perennial Cystoseira compressa and C. compressa subsp. pustulata. Our results indicate that human impacts can determine spatial patterns in these fragmented and heterogeneous marine habitats, thus stressing the need of carefully considering scale-dependent ecological processes to support conservation and restoration
    corecore