3 research outputs found

    Sympathetic activation in rats with L-NAME-induced hypertension

    Get PDF
    We evaluated the hemodynamic pattern and the contribution of the sympathetic nervous system in conscious and anesthetized (1.4 g/kg urethane, iv) Wistar rats with L-NAME-induced hypertension (20 mg/kg daily). The basal hemodynamic profile was similar for hypertensive animals, conscious (N = 12) or anesthetized (N = 12) treated with L-NAME for 2 or 7 days: increase of total peripheral resistance associated with a decrease of cardiac output (CO) compared to normotensive animals, conscious (N = 14) or anesthetized (N = 14). Sympathetic blockade with hexamethonium essentially caused a decrease in total peripheral resistance in hypertensive animals (conscious, 2 days: from (means ± SEM) 2.47 ± 0.08 to 2.14 ± 0.07; conscious, 7 days: from 2.85 ± 0.13 to 2.07 ± 0.33; anesthetized, 2 days: from 3.00 ± 0.09 to 1.83 ± 0.25 and anesthetized, 7 days: from 3.56 ± 0.11 to 1.53 ± 0.10 mmHg mL-1 min-1) with no change in CO in either group. However, in the normotensive group a fall in CO (conscious: from 125 ± 4.5 to 96 ± 4; anesthetized: from 118 ± 1.5 to 104 ± 5.5 mL/min) was observed. The responses after hexamethonium were more prominent in the hypertensive anesthetized group. However, no difference was observed between conscious and anesthetized normotensive rats in response to sympathetic blockade. The present study shows that the vasoconstriction in response to L-NAME was mediated by the sympathetic drive. The sympathetic tone plays an important role in the initiation and maintenance of hypertension

    Heterogeneous distribution of basal cyclic guanosine monophosphate within distinct neuronal populations in the hypothalamic paraventricular nucleus

    No full text
    The supraoptic (SON) and the paraventricular (PVN) hypothalamic nuclei constitute major neuronal substrates underlying nitric oxide (NO) effects on autonomic and neuroendocrine control. Within these nuclei, constitutively produced NO restrains the firing activity of magnocellular neurosecretory and preautonomic neurons, actions thought to be mediated by a cGMP-dependent enhancement of GABAergic inhibitory transmission. In the present study, we expanded on this knowledge by performing a detailed anatomical characterization of constitutive NO-receptive, cGMP-producing neurons within the PVN. To this end, we combined tract-tracing techniques and immunohistochemistry to visualize cGMP immunoreactivity within functionally, neurochemically, and topographically discrete PVN neuronal populations in Wistar rats. Basal cGMP immunoreactivity was readily observed in the PVN, both in neuronal and vascular profiles. The incidence of cGMP immunoreactivity was significantly higher in magnocellular (69%) compared with preautonomic (∌10%) neuronal populations (P < 0.01). No differences were observed between oxytocin (OT) and vasopressin (VP) magnocellular neurons. In preautonomic neurons, the incidence of cGMP was independent of their subnuclei distribution, innervated target (i.e., intermediolateral cell column, nucleus tractus solitarii, or rostral ventrolateral medulla) or their neurochemical phenotype (i.e., OT or VP). Finally, high levels of cGMP immunoreactivity were observed in GABAergic somata and terminals within the PVN of eGFP-GAD67 transgenic mice. Altogether, these data support a highly heterogeneous distribution of basal cGMP levels within the PVN and further support the notion that constitutive NO actions in the PVN involve intricate cell-cell interactions, as well as heterogeneous signaling modalities

    Renin-Angiotensin System and Alzheimer’s Disease Pathophysiology: From the Potential Interactions to Therapeutic Perspectives

    No full text
    corecore