24 research outputs found

    Alcohol Pattern Consumption Differently Affects the Efficiency of Macrophage Reverse Cholesterol Transport in Vivo

    Get PDF
    It has been well established that moderate alcohol consumption inversely correlates with cardiovascular morbidity and mortality, whereas binge alcohol drinking increases cardiovascular disease risk. The aim of this study was to assess in vivo the impact of different drinking patterns on reverse cholesterol transport (RCT); the atheroprotective process leading to the removal of excess cholesterol from the body. RCT was measured with a standardized, radioisotope-based technique in three groups of atherosclerosis-prone apolipoprotein E knock out mice: Placebo group, receiving water, which would mimic the abstainers; moderate group, receiving 0.8 g/kg alcohol/day for 28 days, which would mimic a moderate intake; binge group, receiving 0.8 g/kg alcohol/day for 5 days/week, followed by the administration of 2.8 g/kg alcohol/day for 2 days/week, which would mimic a heavy intake in a short period. Mice in the binge drinking group displayed an increase in total cholesterol, high density lipoprotein cholesterol (HDL-c) and non-HDL-c (all p < 0.0001 vs. placebo), and a significantly reduced elimination of fecal cholesterol. The moderate consumption did not lead to any changes in circulating lipids, but slightly improved cholesterol mobilization along the RCT pathway. Overall, our data confirm the importance of considering not only the total amount, but also the different consumption patterns to define the impact of alcohol on cardiovascular risk

    HDL in COVID-19 Patients: Evidence from an Italian Cross-Sectional Study

    No full text
    A number of studies have highlighted important alterations of the lipid profile in COVID-19 patients. Besides the well-known atheroprotective function, HDL displays anti-inflammatory, anti-oxidative, and anti-infectious properties. The aim of this retrospective study was to assess the HDL anti-inflammatory and antioxidant features, by evaluation of HDL-associated Serum amyloid A (SAA) enrichment and HDL-paraoxonase 1 (PON-1) activity, in a cohort of COVID-19 patients hospitalized at the Cardiorespiratory COVID-19 Unit of Fondazione IRCCS Ca&rsquo; Granda Ospedale Maggiore Policlinico of Milan. COVID-19 patients reached very low levels of HDL-c (mean &plusmn; SD: 27.1 &plusmn; 9.7 mg/dL) with a marked rise in TG (mean &plusmn; SD: 165.9 &plusmn; 62.5 mg/dL). Compared to matched-controls, SAA levels were significantly raised in COVID-19 patients at admission. There were no significant differences in the SAA amount between 83 alive and 22 dead patients for all-cause in-hospital mortality. Similar findings were reached in the case of PON-1 activity, with no differences between alive and dead patients for all-cause in-hospital mortality. In conclusion, although not related to the prediction of in-hospital mortality, reduction in HDL-c and the enrichment of SAA in HDL are a mirror of SARS-CoV-2 positivity even at the very early stages of the infection

    Drug-drug interactions in polypharmacy patients: The impact of renal impairment

    No full text
    Chronic kidney disease (CKD) is a long-term condition characterized by a gradual loss of kidney functions, usually accompanied by other comorbidities including cardiovascular diseases (hypertension, heart failure and stroke) and diabetes mellitus. Therefore, multiple pharmacological prescriptions are very common in these patients. Epidemiological and clinical observations have shown that polypharmacy may increase the probability of adverse drug reactions (ADRs), possibly through a higher risk of drug-drug interactions (DDIs). Renal impairment may further worsen this scenario by affecting the physiological and biochemical pathways underlying pharmacokinetics and ultimately modifying the pharmacodynamic responses. It has been estimated that the prevalence of DDIs in CKD patients ranged between 56.9% and 89.1%, accounting for a significant increase in healthcare costs, length and frequency of hospitalization, with a detrimental impact on health and quality of life of these patients. Despite these recognized high-risk conditions, scientific literature released on this topic is still limited. Basing on the most commonly prescribed therapies in patients with CKD, the present short review summarizes the current state of knowledge of the putative DDIs occurring in CKD patients undergoing polytherapy. The most relevant underlying mechanisms and their clinical significance are also debated

    Impact of Dietary Lipids on the Reverse Cholesterol Transport: What We Learned from Animal Studies

    Get PDF
    Reverse cholesterol transport (RCT) is a physiological mechanism protecting cells from an excessive accumulation of cholesterol. When this process begins in vascular macrophages, it acquires antiatherogenic properties, as has been widely demonstrated in animal models. Dietary lipids, despite representing a fundamental source of energy and exerting multiple biological functions, may induce detrimental effects on cardiovascular health. In the present review we summarize the current knowledge on the mechanisms of action of the most relevant classes of dietary lipids, such as fatty acids, sterols and liposoluble vitamins, with effects on different steps of RCT. We also provide a critical analysis of data obtained from experimental models which can serve as a valuable tool to clarify the effects of dietary lipids on cardiovascular disease

    HDL Proteome and Alzheimer’s Disease: Evidence of a Link

    No full text
    Several lines of epidemiological evidence link increased levels of high-density lipoprotein-cholesterol (HDL-C) with lower risk of Alzheimer&rsquo;s disease (AD). This observed relationship might reflect the beneficial effects of HDL on the cardiovascular system, likely due to the implication of vascular dysregulation in AD development. The atheroprotective properties of this lipoprotein are mostly due to its proteome. In particular, apolipoprotein (Apo) A-I, E, and J and the antioxidant accessory protein paraoxonase 1 (PON1), are the main determinants of the biological function of HDL. Intriguingly, these HDL constituent proteins are also present in the brain, either from in situ expression, or derived from the periphery. Growing preclinical evidence suggests that these HDL proteins may prevent the aberrant changes in the brain that characterize AD pathogenesis. In the present review, we summarize and critically examine the current state of knowledge on the role of these atheroprotective HDL-associated proteins in AD pathogenesis and physiopathology

    Sirtuin1, not NAMPT, possesses anti-inflammatory effects in epicardial, pericardial and subcutaneous adipose tissue in patients with CHD

    No full text
    Abstract Background Inflammation in cardiac adipose tissue (AT) is associated with atherosclerosis. We investigated whether the epicardial-, pericardial and pre-sternal subcutaneous AT (EAT, PAT and SAT) expression of Sirtuin1 (SIRT1) and nicotinamide phosphoribosyl transferase (NAMPT) are involved in the inflammatory process in coronary heart disease (CHD), and potentially associated to nod-like receptor family pyrin domain containing 3 (NLRP3) inflammasome-related markers, macrophage polarization markers, cell markers and the cardiometabolic profile. Methods In this cohort study performed between 2016 and 2018, EAT, PAT and SAT biopsies were retrieved from 52 CHD patients (77% men, median age 67) undergoing open-chest coronary artery bypass grafting (CABG), and 22 patients (50% men, median age 69) undergoing aortic valve replacement serving as controls. AT samples were snap-frozen at – 80 °C until RNA extraction and AT expression of actual markers, relatively quantified by PCR. Circulating SIRT1 and NAMPT were measured with Enzyme-linked immunosorbent assays (ELISAs). Non-parametric statistical tests were mainly used, including Friedman’s test coupled to Wilcoxon signed-rank test and Spearman Correlation. Results SIRT1 and NAMPT levels were similar in CHD and controls. In CHD, SIRT1 and NAMPT were inter-correlated in all AT compartments (r = 0.37–0.56, p < 0.01, all), and differently expressed between compartments, with the highest expression in SAT, significantly different from EAT (p < 0.01, both). Circulating SIRT1 and NAMPT levels were inversely associated (r = − 0.32, p = 0.024). In EAT and SAT, SIRT1 expression was inversely associated with IL-18 (r = − 0.43 and r = − 0.38, p < 0.01, both), whereas NAMPT expression was positively associated with the NLRP3 inflammasome-related markers in all compartments (r = 0.37–0.55, p < 0.01, all). While SIRT1 and NAMPT correlated to nitric oxide synthase 2 (NOS2), especially in SAT (r = 0.50–0.52, p ≤ 0.01, both), SIRT1 expression was related to endothelial cells, and NAMPT to macrophages. SIRT1 levels were correlated to weight and waist (r = 0.32 and r = 0.38, p < 0.03, both) and inversely to triglycerides and glycated haemoglobin (HbA1c) (r = − 0.33–− 0.37, p < 0.03, all), the latter positively correlated to NAMPT concentration (r = 0.39, p = 0.010). Conclusion The study indicates that targeting SIRT1, with its anti-inflammatory properties, may be a novel anti-inflammatory strategy in preventing atherosclerosis and CHD progression. NAMPT may be an early player in AT inflammation, mediating/reflecting a pro-inflammatory state. Trial Registration: Registration: Clinicaltrials.gov ID: NCT02760914, registered the 5th of February 2016, http://clinicaltrials.gov/NCT02760914 Graphical Abstrac

    Effect of the JAK/STAT Inhibitor Tofacitinib on Macrophage Cholesterol Metabolism

    No full text
    The impact of JAK/STAT inhibitors, which are used in various inflammatory diseases, on cardiovascular risk is controversial and has recently raised safety concerns. Our study investigates the direct effects of tofacitinib on macrophage cholesterol metabolism, which is crucial for atherosclerosis plaque development and stability. Cultured human macrophages THP-1 were used to assess the impact of tofacitinib on cell cholesterol efflux and synthesis via radioisotopic methods, and on cholesterol uptake by measuring the cell cholesterol content with a fluorometric assay. The cholesterol acceptors and donors were either standard lipoproteins or sera from patients with juvenile idiopathic arthritis (JIA) and from control subjects. Tofacitinib significantly increased the macrophage cholesterol efflux to all acceptors; it reduced cholesterol uptake from both the normal and hypercholesterolemic sera; and it reduced cholesterol synthesis. The treatment of macrophages with tofacitinib was able to increase the cholesterol efflux and decrease cholesterol uptake when using sera from untreated JIA patients with active disease as cholesterol acceptors and donors, respectively. In conclusion, our in vitro data support the concept that tofacitinib has a favorable impact on macrophage cholesterol metabolism, even in the presence of sera from rheumatologic patients, and suggest that other mechanisms may be responsible for the cardiovascular risk associated with tofacitinib use in selected patient populations
    corecore