7,169 research outputs found

    Effects of unilateral vs. bilateral resistance training interventions on measures of strength, jump, linear and change of direction speed: a systematic review and meta-analysis

    Get PDF
    Background: Exercises can be categorized into either unilateral or bilateral movements. Despite the topic popularity, the answer to the question as to which (unilateral or bilateral) is superior for a certain athletic performance enhancement remains unclear. Purpose: To compare the effect of unilateral and bilateral resistance training interventions on measures of athletic performance. Methods: Keywords related with unilateral, bilateral and performance were used to search in the Web of Science, Pubmed databases, and Google Scholar and ResearchGate™ websites. Results: 6365 articles were initially identified, 14 met the inclusion criteria and were included in the final analysis, with overall article quality being deemed moderate. The quantitative analysis comprised 392 subjects (aged: 16 to 26 years). Sub-group analysis showed that unilateral exercise resistance training resulted in a large effect in improving unilateral jump performance compared to bilateral training (ES = 0.89 [0.52, 1.26]). In contrast, bilateral exercise resistance training showed a small effect in improving bilateral strength compared to unilateral (ES = -0.43 [-0.71, -0.14]). Non-significant differences were found in improving unilateral strength (ES = 0.26 [-0.03, 0.55]), bilateral jump performance (ES = -0.04 [-0.31, 0.23]), change of direction (COD) (ES = 0.31 [-0.01, 0.63]) and speed (ES = -0.12 [-0.46, 0.21]) performance. Conclusion: Unilateral resistance training exercises should be chosen for improving unilateral jumping performance, and bilateral resistance training exercises should be chosen for improving bilateral strength performance

    Robust Estimation and Forecasting of the Capital Asset Pricing Model

    Get PDF
    In this paper, we develop a modified maximum likelihood (MML) estimator for the multiple linear regression model with underlying student t distribution. We obtain the closed form of the estimators, derive the asymptotic properties, and demonstrate that the MML estimator is more appropriate for estimating the parameters of the Capital Asset Pricing Model by comparing its performance with least squares estimators (LSE) on the monthly returns of US portfolios. The empirical results reveal that the MML estimators are more efficient than LSE in terms of the relative efficiency of one-step-ahead forecast mean square error in small samples

    SDSS J143030.22-001115.1: A misclassified narrow-line Seyfert 1 galaxy with flat X-ray spectrum

    Full text link
    We used multi-component profiles to model Hβ\beta and [O III]λλ\lambda \lambda 4959,5007 lines for SDSS J143030.22-001115.1, a narrow-line Seyfert 1 galaxy (NLS1) in a sample of 150 NLS1s candidates selected from the Sloan Digital Sky Survey (SDSS) Early Data Release (EDR). After subtracting the Hβ\beta contribution from narrow line regions (NLRs), we found that its full width half maximum (FWHM) of broad Hβ\beta line is nearly 2900 \kms, significantly larger than the customarily adopted criterion of 2000 \kms. With its weak Fe II multiples, we think that SDSS J143030.22-001115.1 can't be classified as a genuine NLS1. When we calculate the virial black hole masses of NLS1s, we should use the Hβ\beta linewidth after subtracting the Hβ\beta contribution from NLRs.Comment: 7 pages, 1 table, accepted by ChJA

    The effect of wave-particle interactions on low energy cutoffs in solar flare electron spectra

    Full text link
    Solar flare hard X-ray spectra from RHESSI are normally interpreted in terms of purely collisional electron beam propagation, ignoring spatial evolution and collective effects. In this paper we present self-consistent numerical simulations of the spatial and temporal evolution of an electron beam subject to collisional transport and beam-driven Langmuir wave turbulence. These wave-particle interactions represent the background plasma's response to the electron beam propagating from the corona to chromosphere and occur on a far faster timescale than coulomb collisions. From these simulations we derive the mean electron flux spectrum, comparable to such spectra recovered from high resolution hard X-rays observations of solar flares with RHESSI. We find that a negative spectral index (i.e. a spectrum that increases with energy), or local minima when including the expected thermal spectral component at low energies, occurs in the standard thick-target model, when coulomb collisions are only considered. The inclusion of wave-particle interactions does not produce a local minimum, maintaining a positive spectral index. These simulations are a step towards a more complete treatment of electron transport in solar flares and suggest that a flat spectrum (spectral index of 0 to 1) down to thermal energies maybe a better approximation instead of a sharp cut-off in the injected electron spectrum.Comment: 6 pages, 5 figures, accepted by ApJ

    Examining the Seyfert - Starburst Connection with Arcsecond Resolution Radio Continuum Observations

    Get PDF
    We compare the arcsecond-scale circumnuclear radio continuum properties between five Seyfert and five starburst galaxies, concentrating on the search for any structures that could imply a spatial or causal connection between the nuclear activity and a circumnuclear starburst ring. No evidence is found in the radio emission for a link between the triggering or feeding of nuclear activity and the properties of circumnuclear star formation. Conversely, there is no clear evidence of nuclear outflows or jets triggering activity in the circumnuclear rings of star formation. Interestingly, the difference in the angle between the apparent orientation of the most elongated radio emission and the orientation of the major axis of the galaxy is on average larger in Seyferts than in starburst galaxies, and Seyferts appear to have a larger physical size scale of the circumnuclear radio continuum emission. The concentration, asymmetry, and clumpiness parameters of radio continuum emission in Seyferts and starbursts are comparable, as are the radial profiles of radio continuum and near-infrared line emission. The circumnuclear star formation and supernova rates do not depend on the level of nuclear activity. The radio emission usually traces the near-infrared Br-gamma and H2 1-0 S(1) line emission on large spatial scales, but locally their distributions are different, most likely because of the effects of varying local magnetic fields and dust absorption and scattering.Comment: 21 pages, 10 figures. Accepted for publication in the Astronomical Journa

    On Measuring Split-SUSY Neutralino and Chargino Masses at the LHC

    Full text link
    In Split-Supersymmetry models, where the only non-Standard Model states produceable at LHC-energies consist of a gluino plus neutralinos and charginos, it is conventionally accepted that only mass differences among these latter are measureable at the LHC. The present work shows that application of a simple `Kinematic Selection' technique allows full reconstruction of neutralino and chargino masses from one event, in principle. A Monte Carlo simulation demonstrates the feasibilty of using this technique at the LHC.Comment: 17 pages, 4 figures; EPJC versio

    FLASH: Heterogeneity-Aware Federated Learning at Scale

    Get PDF
    Federated learning (FL) becomes a promising machine learning paradigm. The impact of heterogeneous hardware specifications and dynamic states on the FL process has not yet been studied systematically. This paper presents the first large-scale study of this impact based on real-world data collected from 136k smartphones. We conducted extensive experiments on our proposed heterogeneity-aware FL platform namely FLASH , to systematically explore the performance of state-of-the-art FL algorithms and key FL configurations in heterogeneity-aware and -unaware settings, finding the following. (1) Heterogeneity causes accuracy to drop by up to 9.2% and convergence time to increase by 2.32×. (2) Heterogeneity negatively impacts popular aggregation algorithms, e.g., the accuracy variance reduction brought by q-FedAvg drops by 17.5%. (3) Heterogeneity does not worsen the accuracy loss caused by gradient-compression algorithms significantly, but it compromises the convergence time by up to 2.5×. (4) Heterogeneity hinders client-selection algorithms from selecting wanted clients, thus reducing effectiveness. e.g., the accuracy increase brought by the state-of-the-art client-selection algorithm drops by 73.9%. (5) Heterogeneity causes the optimal FL hyper-parameters to drift significantly. More specifically, the heterogeneity-unaware setting favors looser deadline and higher reporting fraction to achieve better training performance. (6) Heterogeneity results in non-trivial failed clients (more than 10%) and leads to participation bias (the top 30% of clients contribute 86% of computations). Our FLASH platform and data have been publicly open sourced

    Measurements of neutral vector resonance in Higgsless models at the LHC

    Full text link
    In Higgsless models, new vector resonances appear to restore the unitarity of the W_L W_L scattering amplitude without the Higgs boson. In the ideal delocalized three site Higgsless model, one of large prodcution cross section of the neutral vector resonance (Z') at the Large Hadron Collider is the W-associated production, pp \to Z'W \to WWW. Although the dileptonic decay channnel, l\nu l'\nu 'jj, is experimentally clean to search for the Z' signals, it is difficult to reconstruct the Z' invariant mass due to the two neutrinos in the final state. We study collider signatures of Z' using the M_{T2}-Assisted On-Shell (MAOS) reconstruction of the missing neutrino momenta. We show the prospect of the Z' mass determination in the channel, l\nu l'\nu 'jj, at the Large Hadron Collider.Comment: 16 pages, 6 figures, 5 tables; v2: references added, minor corrections, version published in JHE
    corecore