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Abstract—Federated learning (FL) becomes a promising machine learning paradigm. The impact of heterogeneous hardware
specifications and dynamic states on the FL process has not yet been studied systematically. This paper presents the first large-scale
study of this impact based on real-world data collected from 136k smartphones. We conducted extensive experiments on our proposed
heterogeneity-aware FL platform namely FLASH, to systematically explore the performance of state-of-the-art FL algorithms and key
FL configurations in heterogeneity-aware and -unaware settings, finding the following. (1) Heterogeneity causes accuracy to drop by up
to 9.2% and convergence time to increase by 2.32×. (2) Heterogeneity negatively impacts popular aggregation algorithms, e.g., the
accuracy variance reduction brought by q-FedAvg drops by 17.5%. (3) Heterogeneity does not worsen the accuracy loss caused by
gradient-compression algorithms significantly, but it compromises the convergence time by up to 2.5×. (4) Heterogeneity hinders
client-selection algorithms from selecting wanted clients, thus reducing effectiveness. e.g., the accuracy increase brought by the
state-of-the-art client-selection algorithm drops by 73.9%. (5) Heterogeneity causes the optimal FL hyper-parameters to drift
significantly. More specifically, the heterogeneity-unaware setting favors looser deadline and higher reporting fraction to achieve better
training performance. (6) Heterogeneity results in non-trivial failed clients (more than 10%) and leads to participation bias (the top 30%
of clients contribute 86% of computations). Our FLASH platform and data have been publicly open sourced.

Index Terms—Federated learning, heterogeneity, impact analysis
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1 INTRODUCTION

In recent years, machine learning (ML) has undergone a
paradigm shift from cloud data centers toward mobile de-
vices [1], [2], [3], [4]. Mobile devices routinely collect user
behavior/usage data and these real-world data can be used
to train high-quality ML models. However, with increasing
concerns about user privacy, many policies and legislation
formulations are enforced to regulate the use of private data
e.g., the GDPR [5] and CCPA [6]. As a result, the emerging
federated learning (FL) algorithm [7] has drawn tremendous
attention due to its potential privacy-preserving advantages
[2], [8]. The key idea of FL is to use a set of personal
mobile devices to train an ML model collaboratively under
the orchestration of a central server. Since the FL training
process takes place on mobile devices without uploading
user data beyond them, it is regarded to be quite promising
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for preserving user privacy. Therefore, FL has been widely
adopted by industry leaders such as Google, Apple, and
NVIDIA for various ML tasks including query suggestion
[9], natural language processing [10], medical imaging AI
[11], etc.

Essentially, FL relies on numerous and distributed mo-
bile devices to train and share ML models. These devices
(e.g., personal smartphones) have certain inherent charac-
teristics that set FL apart from traditional distributed ML.
These characteristics are conceptually called heterogeneity [8].
In particular, heterogeneity can be attributed to two major
aspects. One is from hardware specifications of devices
(called hardware heterogeneity), e.g., different capabilities of
CPU, RAM, and battery life. Additionally, the state and run-
ning environment of participating devices may be various
and dynamic (called state heterogeneity), e.g., CPU busy/free,
stable/unreliable network connections to the server, etc.

Intuitively, heterogeneity can impact FL in terms of
accuracy and training time. For instance, it is not surprising
when a device fails to upload its local model updates to
the server, and this can affect the training time to obtain a
converged global model. Furthermore, devices that seldom
participate in an FL task due to unexpected states (e.g.,
frequently interrupted by users) can be under-represented
by the global model.

To the best of our knowledge, most FL researchers take a
simulation approach to evaluate their algorithms, given the
high cost of field deployment [7], [12], [13], [14], [15], [16].
In this case, they usually ignore heterogeneity and make
an overly idealistic assumption, i.e., all devices are always
available for training and equipped with homogeneous hard-
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ware specifications (e.g., the same CPU and RAM capacity).
What is more, since most research efforts have not accessed
real-world large-scale FL systems, they usually apply an
ideal set of system configurations. For example, these ef-
forts subconsciously set the reporting deadline (deadline
for devices to finish the job in a round) to a very loose
value (e.g., unlimited) and expect that all devices can up-
load successfully and promptly. Although some recent stud-
ies [17], [18], [19], [20], [21] have realized the heterogeneity
in FL, they still fail to evaluate in a heterogeneity-aware
environment due to the lack of real-world data describing
heterogeneity among devices 1. In summary, the impact of
heterogeneity has not yet been systematically demonstrated
and measured.

In this work, we carry out the first systematic study
to measure the impact of heterogeneity on FL. To this
end, we have developed a holistic platform that complies
with the standard and widely adopted FL protocol [1], [9],
[10] but enables us to evaluate existing FL algorithms in
a heterogeneity-aware environment (i.e., considering devices
with dynamic states and various hardware capacities) for
the first time. The platform is powered by a large-scale real-
world dataset that faithfully reflects heterogeneity across
numerous devices. To build this dataset, we collected the
device hardware specifications and regular state changes
(including the states related to device check-in and drop-
out in FL) of 136k smartphones in one week through a
commodity input method app (IMA).

Based on the data and platform, we conducted ex-
tensive experiments (>7,000 GPU-hours on the cloud) to
measure the impact of heterogeneity on FL by comparing
the results of different FL algorithms and configurations
in heterogeneity-aware and heterogeneity-unaware settings.
We selected four representative FL tasks for study, including
two image-classification tasks and two natural language
processing tasks. For every task, we employed a bench-
mark dataset for model training. Three of the benchmark
datasets [22], [23], [24] have been widely used in existing
FL-related studies [7], [12], [13], [17], [25], and the last
one is a real-world text input dataset collected from the
aforementioned IMA.

In summary, we make the following contributions:
• Dataset. We establish a large-scale dataset that describes
heterogeneity among 136,000 real-world mobile devices. To
the best of our knowledge, it is the first dataset of this
kind and on this scale, and can easily be incorporated into
existing FL platforms.
• Platform. We built an FL platform, namely FLASH, which
is the first known heterogeneity-aware environment for
evaluating the impact raised by heterogeneity in popular
FL algorithms and configurations.
• Findings and implications. We conducted extensive mea-
surement experiments to quantify the impact of heterogene-
ity and investigate the influential factors behind this impact.
Based on the results, we derive the following findings and
implications.
• Heterogeneity has a non-trivial impact on the perfor-

mance of FL algorithms. For basic FL algorithms (e.g.,

1Large companies have built practical FL systems [1], but detailed
data is not disclosed.

FedAvg), heterogeneity causes up to a 9.2% accuracy drop
and a 2.64× longer training time; heterogeneity also has
a significant impact on the effectiveness of advanced
FL optimization algorithms (e.g., aggregation algorithms,
gradient-compression algorithms, and client-selection al-
gorithms). For example, heterogeneity causes the accuracy
variance reduction brought by q-FedAvg, a state-of-the-art
aggregation algorithm pursuing fair contributions of par-
ticipating devices in FL, to drop by 17.5%; heterogeneity
lengthens the training time of gradient-compression algo-
rithms by up to 2.5×; and it hinders FL client-selection
algorithms from selecting wanted clients, thus making
them less effective. These findings urge FL algorithm
designers to consider necessary heterogeneity.

• Heterogeneity indeed impacts FL configurations. Specif-
ically, the optimal settings on deadline and reporting
fraction, two key system configurations in FL, are signifi-
cantly different in heterogeneity-aware and heterogeneity-
unaware settings. In heterogeneity-unaware settings, one
could simply choose a loose enough deadline and set
the reporting fraction to 1.0; in heterogeneity-aware set-
tings, one needs to adjust them carefully according to
the proportion of failed clients. These findings suggest
that heterogeneity-aware FL platforms are needed for FL
developers to adjust the configurations.

• We dive deeper into the results and find that state het-
erogeneity has more influence over the accuracy drop
than hardware heterogeneity (9.5% vs. 0.4%). Moreover,
we identify two influential factors that account for the
aforementioned impact of heterogeneity. (1) Device failure:
on average, 11.6% of selected devices fail to upload their
model updates per round due to an unreliable network
connection, excessive training time, and drop-out caused
by user interruption. This failure slows down model
convergence and wastes valuable hardware resources. (2)
Participant bias: devices go through the FL process in a
biased manner. For instance, we find that more than 30%
of devices never participate in the learning process when
the model converges and the global model is dominated
by active devices. These findings suggest that a “proactive
alerting” technique that reduces device failure and a selec-
tion scheme that resolves bias are promising to mitigate
the impact of heterogeneity.

• Open source. We make the platform, scripts, and data
used in this study available 2 as an additional contribution to
the research community for other researchers to reproduce,
replicate, extend, and build upon.

Some of the results in this paper were reported in our
previous work [26]. We expand on the conference version in
the following aspects. (1) We have extended our dataset and
improved our platform to better incorporate heterogeneity
(see Sections 3.2.1 and 3.3). (2) We have extended our
research scope to systematically investigate the impact of
heterogeneity on client-selection optimization (see Section
5.3) and FL configurations (see Section 6). (3) We have
extended Section 2 to provide comprehensive background
knowledge and compare state-of-the-art FL research.

The rest of this paper is organized as follows. Section 2
describes the background of this work and related research,

2https://github.com/PKU-Chengxu/FLASH
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and proposes our research questions. Section 3 describes
the methodology of this measurement study, including the
collected dataset, proposed FL platform, and detailed ex-
perimental settings. Sections 4 to 7 answer the research
questions based on the evaluation results. Section 8 summa-
rizes practical implications derived from the findings for FL
stakeholders. Section 9 discusses the threats that could affect
the validity of this study, and is followed by concluding
remarks in Section 10.

2 BACKGROUND AND MOTIVATION

In this section, we first introduce the background knowl-
edge and work related to this study. Then we propose our
research questions and describe what motivated them.

2.1 Preliminaries and Related Work
FL is an emerging privacy-preserving learning paradigm. In
this paper, we focus on the most widely studied scenario
of FL – cross-device FL [7], [27] – which utilizes a federation
of client devices3, coordinated by a central server, to train a
global ML model. Its typical workflow [1] consists of several
rounds, where each round can be divided into three phases:
(1) the central server first selects devices to participate in the
FL; (2) each selected device retrieves the latest global model
from the server as the local model, re-trains the local model
with local data, and uploads the updated weights/gradients
of the local model to the server; (3) the server finally aggre-
gates the updates from devices and obtains a new global
model.

In practice, FL is typically implemented based on state-
of-the-art FL algorithms, such as FedAvg [7]. FedAvg is a
representative FL algorithm that has been widely used in
the FL literature [13], [15], [16], [28] and deployed in the
industry, e.g., in Google’s production FL system [20]. In
FedAvg, devices perform multiple local training epochs,
where a device updates the weights of its local model using
its local data each round. Then the central server averages
the updated weights of local models as the new weights of
the global model.

Furthermore, many advanced algorithms have been pro-
posed to optimize FL, including reducing the communica-
tion cost between the central server and devices [12], [29],
[30], [31], [32], [33], [34], accelerating the training process
[17], [21], [35], enhancing the privacy guarantee or attacking
FL models [14], [36], [37], [38], [39], [40], [41], [42], ensuring
fairness across devices [13], [15], [16], minimizing the on-
device energy cost [43], [44], [45], incentivizing data owners
[46], etc. Notably, most of them have not been well eval-
uated in a heterogeneity-aware environment, making their
benefits unclear for real-world deployment.

Apart from the FL algorithms, additional system config-
urations are required to implement FL in real-world appli-
cations [1], [9]. Here, we describe some key configurations.
(1) Reporting deadline (deadline for short) specifies how long
the server waits for the selected clients to finish their job in
each round, including transmission and model training. (2)
Reporting fraction specifies how many clients are needed to
commit a round. In each round, if the proportion of success-
fully uploaded clients is smaller than the fraction, this round

3In the rest of this paper, we use device to refer to client device.

will be discarded and the global model will not be updated
(fail to commit this round). (3) Goal client count specifies how
many clients are selected to participate in the training each
round. (4) Selection time window specifies how long the server
waits when it is selecting clients. Typically, a round will be
abandoned and restarted if the number of available clients
is less than the goal client count. (5) Maximum sample count is
the maximum number of samples used for training on every
single device, which is set to balance the training time on
devices. Although previous FL systems have reported their
configurations [1], [9] on their tasks, most FL researchers
with no access to FL systems still question how to choose
proper configurations since they are usually task-specific.
As a result, most FL research [13], [14], [15], [16] has to
simplify its assumptions and set configurations to an ideal
value. For example, the deadline is usually assumed to be
unlimited because each selected device is expected to finish
its job successfully and promptly [7]. Obviously, that will
not be the case once heterogeneity is considered. However,
the impact of heterogeneity on FL configurations has not
been studied systematically.

Heterogeneity is one of the characteristics that set FL
apart from traditional distributed ML because the training
process in FL usually happens on numerous mobile devices.
Following existing work [2], [8], we define heterogeneity as
(1) the various hardware specifications of participating devices
(called hardware heterogeneity, e.g., different CPU, RAM, and
battery life) and (2) the dynamic and changeable states and
running environments of participating devices (called state het-
erogeneity, e.g., CPU busy/free, stable/unreliable network connec-
tions to the server, etc.).

Intuitively, heterogeneity could affect FL because mo-
bile devices have various hardware capacities (resulting in
various training speeds) and their states are changeable
depending on the devices’ owners. To the best of our
knowledge, most existing FL research ignores heterogeneity
[7], [12], [13], [14], [15] – a typical assumption is that all
devices are always available for training and have consistent
training performance. A small number of works recognize
the existence of heterogeneity in FL and take some steps
to handle it [17], [18], [19], [20]. Unfortunately, it is still
questionable how these methods would perform in real FL
systems. For example, FedProx [17] handles hardware het-
erogeneity by allowing each participating device to perform
a variable amount of work, but the hardware capability of
each device is randomly set and changes in device state
remain unconsidered.

2.2 Research Questions

An important and natural characteristic of FL – hetero-
geneity and its impact – has not been well investigated
in the FL literature, which motivated us to perform this
study. Specifically, we aim to answer the following research
questions (RQs).
• RQ1 (Impact on basic FL algorithms): How does heterogene-
ity affect basic FL algorithms? FedAvg [7], as the state-of-the-
art algorithm to implement FL, has been widely adopted
in the industry [1], [9], [10], [47] and frequently used as a
baseline in the FL literature [13], [16], [17]. Considering its
importance for FL, we use it as a representative basic FL
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Fig. 1. Overview of our methodology.

algorithm and aim to measure whether and how it would
be affected by heterogeneity.
• RQ2 (Impact on advanced FL algorithms): How does
heterogeneity affect advanced FL algorithms? Optimizations [7],
[12], [13], [17], [43], [48], i.e., advanced algorithms, are
proposed on top of FL. Those techniques, however, have
not been evaluated in a heterogeneity-aware environment.
Hence, we study how heterogeneity affects the effectiveness
of these techniques. Specifically, we select three important
and representative categories of algorithms: aggregation
algorithms (a fundamental component in FL), gradient-
compression algorithms (important because massive client-
server communication overheads are one of the challenges
in FL [2]), and client-selection algorithms (an emerging and
promising trend in FL that is effective in improving model
accuracy). These three types of algorithms correspond to
the three phases in FL (see Section 3.3). The results shed
light on the criteria or factors in designing corresponding
algorithms. Specifically, we dive deeper by answering three
specific questions.

• RQ 2.1 (Impact on aggregation algorithms): How does
heterogeneity affect aggregation algorithms? The aggre-
gation algorithm is a key component in FL that de-
termines how to aggregate the model updates from
clients. By evaluating them under heterogeneity-aware
and heterogeneity-unaware settings, we investigate
whether and to what extent their performance is af-
fected.

• RQ 2.2 (Impact on gradient-compression algorithms):
How does heterogeneity affect gradient-compression algo-
rithms? The gradient-compression algorithm is usually
applied to reduce the communication cost between the
server and clients. Considering that gradient compres-
sion is usually achieved at the expense of accuracy,
we investigate whether heterogeneity would exacerbate
this effect.

• RQ 2.3 (Impact on client-selection algorithms):
How does heterogeneity affect client-selection algorithms?
The client-selection algorithm determines the selected
clients in each round of the FL workflow. It is inherently
related to heterogeneity because the available clients
frequently change over time under heterogeneity-aware
settings.

• RQ3 (Impact on FL configurations): How does heterogeneity

affect FL configurations? As presented in Section 2.1, there
are many key system configurations in FL. However, how
to choose proper configurations according to FL tasks is
still an open question. Our study aims to search for and
compare optimal FL configurations in different settings
(i.e., heterogeneity-aware and heterogeneity-unaware), to
provide actionable implications for FL configuration issues.
• RQ4 (Factors that influence impact): What are the factors
that influence heterogeneity? Besides identifying and measur-
ing impact, we are also interested in the reasons behind
it. Revealing the factors influencing heterogeneity will shed
light on how to relieve its impact in future FL research.

3 THE MEASUREMENT METHODOLOGY

In this section, we introduce the approach and the experi-
mental settings of our study.

3.1 Approach Overview

Figure 1 illustrates the overall workflow of our measure-
ment approach. It starts from a benchmark dataset that is
typically partitioned into thousands or millions of devices
holding local data for training ( 1 ). For a fair compari-
son, we always used the same partition strategy in the
heterogeneity-aware and heterogeneity-unaware settings,
i.e., the local training data on a given device were the same.

For heterogeneity-aware settings, we randomly assigned
a state trace ( 2 ) and a hardware capacity ( 3 ) to each de-
vice. A state trace determines whether a device is available
for local training at any simulation timestamp, while the
hardware capacity specifies the training speed and com-
munication bandwidth. Both datasets were collected from
large-scale real-world mobile devices through an IMA app
(details in Section 3.2). As a result, we got a heterogeneous
device set with different local training data, hardware ca-
pacities, and state change dynamics.

For heterogeneity-unaware settings, we assigned each
device an “ideal” state trace, i.e., the device always stayed
available for local training and never dropped out ( 4 ), and
a uniform hardware capacity as the mid-end device in our
IMA dataset (Redmi Note 8) ( 5 ). As a result, we got a
homogeneous device set with the same hardware capacity
and state change dynamics, as existing FL platforms do.
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We next deployed the two device sets to our FL sim-
ulation platform and executed the FL task (e.g., image
classification) under the same configurations and using the
same FL algorithms ( 6 and 7 ). The simulation platform
extends the standard FL protocol considering heterogeneity,
e.g., a device can quit training due to a state change (details
in Section 3.3). We finally analyzed heterogeneity’s impact
by comparing the metric values achieved by heterogeneous
devices and homogeneous devices ( 8 ).

3.2 The Datasets

As described in Section 3.1, we used two types of datasets in
this study, including (1) the IMA dataset describing hetero-
geneity in real-world smartphone usage, and (2) benchmark
datasets containing devices’ local data used for training and
testing ML models.

3.2.1 IMA dataset
To power the heterogeneity-aware settings, we collected
large-scale real-world data from a popular IMA that can be
downloaded from Google Play. The dataset can be divided
into two parts, including (1) device state traces for annotat-
ing state heterogeneity, and (2) capacity data for annotating
hardware heterogeneity.
• Device state traces record the state changes (including
battery charging, battery level, network environment, screen
locking, etc.) of 136k devices over one week starting from
Jan. 31, 2020. More specifically, every time the aforemen-
tioned state changed, the IMA recorded it with a timestamp
and saved it as a state entry (refer to Table 1).

In total, we collected 136k traces (one for each device)
containing 180 million state entries, accounting for 111GB of
storage.

The state traces determine the time intervals when a
device is available for local training, which are critical
in understanding FL performance in heterogeneity-aware
settings. Figure 2 concretely exemplifies how a trace works
during the simulation. The device becomes available for
training at T2 because it meets the state criteria, i.e., when a
device is idle, charged, and connected to WiFi (these criteria
are set by practical FL systems to protect the user experience
[1]). Then after a period of time at T3, the network environ-
ment changes to “4G”, thus the device becomes unavailable.
As a result, we obtain a training-available interval between
T2 and T3. The device may begin to participate in FL at any
time in an available interval, so it can drop out because it
does not meet the criteria (as shown in the upper part of
Figure 2). Similarly, if the device finishes its job before its
state changes, it will succeed in uploading in this round (as
shown in the lower part of Figure 2).

As far as we know, this is the first-of-its-kind device-
usage dataset collected from large-scale real-world devices,
making it much more representative than datasets covering
a small group of devices [49], [50].
• Hardware capacity data indicate the computational and
communication capacities of different devices. This dataset,
along with the aforementioned state trace, determines how
long a device can undergo local training for and whether
it can complete the local training and upload the model
updates to the central server before a deadline.

Field Description Example
user id Anonymized user id. xxxyyyzzz
device model device type SM-A300M
screen trace screen on or off screen on
screen lock trace screen lock or unlock screen lock
time time in current state 2020-01-29 05:52:16
network trace network condition 2G/3G/4G/5G/WiFi
battery trace battery charging state, battery level battery charged off 96.0%

TABLE 1
Example of a state entry.

…
𝑇!

battery	
charged

𝑇" 𝑇# 𝑇$

screen
off WiFi 4G

available
interval

participating
drop out

…
𝑇!

battery	
charged

𝑇" 𝑇# 𝑇$

screen
off WiFi 4G

available
interval

participating
upload

Fig. 2. A trace is a series of state changes over time. In each round, a
client with a trace may drop out (the top figure) or succeed in uploading
(the bottom figure), depending on the device states at the time.

For the computational capacity, we sought to obtain the
training speed of a given device on a given ML model.
Considering the massive number of device types (more
than one thousand types, according to our collected IMA
dataset), it would be too costly to profile all of them. Instead,
inspired by previous work [51], we employed a “regression”
approach, which is illustrated in Figure 3.

The key idea is to train a simple but effective regression
model that takes a device’s hardware performance data
(e.g., CPU performance and memory) as the input and
predicts the device’s training performance (i.e., training
speed on the given ML model). To train this model, we
first selected 20 devices that were representative of our IMA
dataset. These devices ranged from low-end to high-end
devices. We profiled and performed on-device training on
these representative devices and used these ground-truth
data to train a regression model. We implemented on-device

296 AI-Benchmark devices 

randomly
assign

𝑥: hardware performance

AI-Benchmark profile

𝑦": predicted training performance
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Fig. 3. The workflow of predicting the training performance of a device.
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training using a state-of-the-art ML library (MNN [52]) and
recorded the training time for each ML model used in our
experiments as the training performance. Then given an
arbitrary type of device, we leveraged profiling results from
previous work [53] as the input of our regression model.
The profiling results come from AI-Benchmark, a compre-
hensive AI performance benchmark that provides detailed
data on various (up to 296, at the time we carried out
our study) devices’ hardware performance (e.g., CPU and
memory score, INT8/FP16 speed, etc.). If the given device
had been profiled by AI-Benchmark (noted as “known”),
we directly mapped them to the corresponding device.
Otherwise (noted as “unknown”), we randomly assigned
an AI-Benchmark device to it. Finally, we input the AI-
Benchmark profiled data into the regression model and got
the predicted training performance. What is more, consider-
ing that a new ML model that we have not profiled could be
provided by FL developers, we also provide a kernel-level
prediction, following previous work [51].

For the communication capacity, we recruited 30 volun-
teers and deployed a testing app on their devices to peri-
odically (i.e., every two hours) obtain the downstream/up-
stream bandwidth between the devices and a cloud server.
We fitted each volunteer’s data to a normal distribution
and randomly assigned a distribution to the device during
the simulation. The bandwidth data determined the model
uploading/downloading time during the simulation.

3.2.2 Benchmark datasets
We used four benchmark datasets to quantitatively study
the impact of heterogeneity on FL performance. Three
of them (i.e., Reddit [22], Femnist [24], and Celeba [23])
are synthetic datasets widely adopted in the FL litera-
ture [8], [13], [14], [18], while the other is a real-world
input corpus collected from our IMA, named M-Type. M-
Type contains text input from the devices covered in the
state traces in Section 3.2.1.4 Each dataset can be used for
an FL task. Specifically, Femnist and Celeba are for image-
classification tasks, while Reddit and M-Type are for next-
word-prediction tasks. For Femnist and Celeba, we used
CNN models, and for Reddit and M-Type, we used LSTM
models. The four models were implemented by Leaf [25], a
popular FL benchmark. All the datasets are non-IID, i.e., the
data distribution is skewed and unbalanced across devices,
which is a common data distribution in FL scenarios [2]. We
randomly split the data on each device into training/testing
sets (80%/20%).
3.2.3 Ethical considerations
All the data were collected with the explicit agreement
of users through user-term statements and a strict policy
regarding data collection, transmission, and storage. The
IMA users were given an explicit option to opt out of
having their data collected. In addition, we took very careful
steps to protect user privacy and preserve the ethics of our
research. First, our work was approved by the Research
Ethics Committee of the institutes that the authors are
currently affiliated with. Second, the users’ identities were
all completely anonymized during the study. Third, the data

4Due to privacy concerns, we do not include M-Type in our GitHub
repository.
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Fig. 4. The FLASH simulation platform on top of standard FL proto-
cols [1].

were stored and processed on a private, HIPPA-compliant
cloud server, with strict access authorized by the company
that developed the IMA. The whole process was compliant
with the company’s privacy policy.

3.3 The FLASH Simulation Platform

We built a simulation platform named FLASH, which fol-
lows the standard FL protocol [1] and divides the simulation
into three main phases, as shown in Figure 4. We also
followed Google’s report [9] to configure FLASH, e.g., the
time that the server waits for devices to check in. Given an
FL task, a global ML model is trained in a synchronized way
and advanced round by round.
Selection. At the beginning of each round, the server waits
for tens of seconds for devices to check in. Devices that meet
the required state criteria check in to the server ( 1⃝). Then
the server randomly selects a subset (by default 100) of these
training-available devices.
Configuration. The server sends the global model and
configuration to each of the selected devices ( 2⃝), which
instructs the device to train the model. The device starts
to train the model using its local data once the transmission
is complete ( 3⃝).
Reporting. The server waits for the participating devices
to report updates. The time that the server waits is config-
ured by the reporting deadline. Each device first checks its
“reporting qualification” ( 4⃝), i.e., whether it has dropped
out according to its states over the corresponding period.
It also checks if it has missed the deadline according to
the time needed to finish training and communication. The
preceding check is powered by our IMA dataset, described
in Section 3.2.1. The server validates updates based on the
results of the checks and aggregates the qualified updates
( 5⃝). Devices that fail to report and those that are not
selected will wait until the next round ( 6⃝). This reporting
qualification step is what enables heterogeneity-aware FL
and distinguishes our platform from existing ones.
Additional system configurations. As described above, our
platform supports some additional system configurations,
which are powered by the aforementioned IMA dataset.
These configurations are important and necessary when
deploying FL in the real world and, to the best of our
knowledge, our platform is the first FL platform to support
these configurations. The additional configurations include
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Algorithms Acc. Training
Time/Round

Compression
Ratio Var. of Acc.

FedAvg ✓ ✓ − −
Structured Updates ✓ ✓ ✓ −

GDrop ✓ ✓ ✓ −
SignSGD ✓ ✓ ✓ −
q-FedAvg ✓ ✓ − ✓
FedProx ✓ ✓ − −

Oort ✓ ✓ − −
FedCS ✓ ✓ − −

TABLE 2
Three categories of FL algorithms we chose and the corresponding

metrics we measured.

reporting deadline, reporting fraction, goal client count, selection
time window, and maximum sample count (please refer to Sec-
tion 2 for more detail about these configurations). Among
them, reporting deadline and reporting fraction are two key
configurations that directly control whether a round can
be successfully committed. We will investigate the impact
of heterogeneity on their selection and provide empirical
guidance on how to properly configure them in Section 6.
3.4 Experimental Settings
Algorithms. We briefly introduce the algorithms explored
in our study and provide more details and their hyper-
parameters in the following sections. The algorithms can
be divided into four categories: (1) the basic algorithm, i.e.,
FedAvg, which has been deployed to real systems [1] and
is widely used in the FL literature [12], [13], [15], [16];
(2) aggregation algorithms that determine how to aggre-
gate the weights/gradients uploaded from multiple devices,
including q-FedAvg [13] and FedProx [17]; (3) compression
algorithms, including Structured Updates [12], Gradient Drop-
ping (GDrop) [54], and SignSGD [55], which compress local
models’ weights/gradients to reduce the communication
cost between devices and the central server; and (4) client-
selection algorithms, including Oort [21] and FedCS [18],
which determine the selected clients in each round to im-
prove model accuracy.
Metrics. In our experiments, we quantify the impact of
heterogeneity by reporting the following metrics: (1) conver-
gence accuracy, which is directly related to the performance
of an algorithm; (2) training time/round, which is defined as
the time/rounds for the global model to converge (we note
that the training time reported by our simulation platform
is the running time after the FL system is deployed in
the real world, instead of the time to run the simulation
purely on the cloud); (3) compression ratio, which is defined
as the fraction of the size of the compressed gradients to the
original size [56]; (4) variance of accuracy, which is calculated
as the standard deviation of accuracy across all the devices
in the benchmark dataset and indicates the cross-device
fairness of an algorithm. Table 2 summarizes the algorithms
and the corresponding metrics that we measure.
Computing Environment. All experiments were performed
on a high-performance computing cluster with Red Hat
Enterprise Linux Server release 7.3 (Maipo). The cluster had
10 GPU workers. Each worker was equipped with two Intel
Xeon E5-2643 V4 processors, 256G of main memory, and 2
NVIDIA Tesla P100 graphics cards. In total, the reported
experiments cost more than 7,000 GPU-hours.

4 RQ1: IMPACT ON BASIC ALGORITHMS

We first measured the impact of heterogeneity on the per-
formance (in terms of accuracy and training time/rounds) of

Dataset Heter. Algo. Average Worst 10% Best 10% Var. ×10−4

Femnist
Unaware FedAvg 82.13% 61.1% 97.2% 213

q-FedAvg 82.66% 64.7% 95.1% 157 (26.3% ↓)

Aware FedAvg 81.22% 61.1% 94.9% 203
q-FedAvg 81.24% 64.7% 95.1% 159 (21.7% ↓)

M-Type
Unaware FedAvg 8.15% 2.33% 13.5% 19

q-FedAvg 7.78% 2.33% 13.0% 17 (10.5% ↓)

Aware FedAvg 7.47% 2.27% 12.3% 16.2
q-FedAvg 7.47% 2.33% 12.4% 15.6 (3.7% ↓)

TABLE 3
Test accuracy for q-FedAvg and FedAvg. “Var” represents the variance

in accuracy across devices.

the basic FedAvg algorithm. To obtain a more reliable result,
we performed the measurement under different numbers of
local training epochs, i.e., different numbers of times that
the devices used their local data to update the weights
of their local models (see Section 2). The number of local
training epochs is an important FedAvg hyper-parameter
used to balance the communication cost between the server
and devices [7], [16], [17]. We followed previous work [7]
in setting this number (denoted as E) as 1, 5, and 20. We
also used the learning rate and batch size recommended by
Leaf [25] for each ML model. Figure 5 illustrates how accu-
racy changes with training time and training rounds under
different numbers of local training epochs. We summarize
our observations and insights as follows.
• Heterogeneity causes a non-trivial accuracy drop in FL.
In heterogeneity-aware settings, accuracy decreases on each
dataset across various local training epochs, specifically by
an average of 2.3%, 0.5%, and 4% on the existing Femnist,
Celeba, and Reddit datasets, respectively. The accuracy drop
is more significant on our M-Type dataset, at an average of
9.2%.
• Heterogeneity obviously slows down the FL training
process in terms of both training time and training rounds.
We first analyzed the results in terms of training time.
In each setting of the local training epoch, training time
increases on each dataset when heterogeneity is considered.
The increase ranges from 1.15× (Reddit with E = 1) to
2.32× (Celeba with E = 20) – an average of 1.74×. In ad-
dition, we find that training time increases more obviously
when the number of local training epochs increases. When
we set E to 20, the training time even increases by around 12
hours on Femnist and Celeba. We next analyzed the results
in terms of training rounds. Similar to the training time,
training rounds increase on each dataset when heterogene-
ity is considered. The increase ranges from 1.02× (M-Type
with E = 20) to 2.64× (Celeba with E = 20) – an average
of 1.42×.
Summary. Based on the results of four datasets in various hyper-
parameter settings, we observe that heterogeneity causes non-
trivial performance degradation to FedAvg, including up to a
9.2% accuracy drop and up to 2.32× longer training time.

5 RQ2: IMPACT ON ADVANCED ALGORITHMS

We now measure the impact of heterogeneity on advanced
FL algorithms, including model aggregation, gradient com-
pression, and client selection.

5.1 RQ2.1: Impact on Aggregation Algorithms

The aggregation algorithm is a key component in FL that
determines how to aggregate the weights or gradients
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Fig. 5. The testing accuracy over time, across different numbers of local training epochs (denoted as E).

Dataset Algo. Acc (%)
Heter-unaware

Acc (%)
Heter-aware

Acc Change
(ratio)

Training time
Heter-unaware

Training time
Heter-aware

Compression
Ratio

Femnist

No Compression 84.1 (0.0%) 83.0 (0.0%) 1.2% ↓ 5.56 hours (1.0×) 5.96 hours (1.0×) 100%
Structured Updates 84.2 (0.1% ↑) 83.2 (0.3% ↑) 1.1% ↓ 5.23 hours (0.95×) 5.56 hours (0.93×) 6.7%
GDrop 82.2 (2.2% ↓) 81.5 (1.8% ↓) 0.8% ↓ 7.17 hours (1.3×) 7.98 hours (1.3×) 21.4% ∼ 28.2%
SignSGD 79.0 (6.1% ↓) 76.3 (8.1% ↓) 3.4% ↓ 7.62 hours (1.4×) 20.5 hours (3.4×) 3.1%

M-Type

No Compression 9.86 (0.0%) 9.28 (0.0%) 5.9% ↓ 0.54 hours (1.0×) 1.23 hours (1.0×) 100%
Structured Updates 9.93 (0.6% ↑) 9.08 (2.2% ↓) 8.6% ↓ 0.53 hours (0.98×) 1.59 hours (1.3×) 39.4%
GDrop 8.09 (18.0% ↓) 8.27 (10.9% ↓) 2.2% ↑ 5.34 hours (10.0×) 4.29 hours (3.5×) 0.1% ∼ 2.1%
SignSGD 10.4 (6.0% ↑) 9.55 (2.9% ↑) 8.5% ↓ 1.45 hours (2.7×) 3.93 hours (3.2×) 3.1%

TABLE 4
The performance of different gradient-compression algorithms. Numbers in brackets indicate the accuracy change compared to the “No

Compression” baseline. “Acc Change” refers to the accuracy change introduced by heterogeneity. The compression ratio is the fraction of the size
of the compressed gradients to the original size.

uploaded from multiple devices. Besides FedAvg, various
aggregation algorithms have been proposed to improve
efficiency [17], [18], [48], ensure fairness [13], preserve pri-
vacy [36], [48], etc. To study how heterogeneity affects
the performance of aggregation algorithms, we focus on
two representative ones – q-FedAvg [13] and FedProx [17]
– both of which are open-sourced. q-FedAvg is proposed to
address the fairness issues in FL. It minimizes an aggregated
reweighted loss so that the devices with higher loss are
given higher relative weights. FedProx is proposed to tackle
hardware heterogeneity in FL. Compared to FedAvg, FedProx
allows devices to perform various amounts of training work
based on their available system resources, while FedAvg
simply drops the stragglers that fail to upload the model
updates. FedProx also adds a proximal term to the local
optimization objective (loss function) to limit the impact of
variable local updates.

We use FedAvg as the baseline for comparison. Due to
the different optimization goals of q-FedAvg and FedProx, we
make the comparison separately. We show the results for q-
FedAvg in Table 3, which illustrates the same metrics that q-
FedAvg evaluates: variance of accuracy, worst 10% accuracy
(i.e., 10% quantile of accuracy across devices), and best 10%
accuracy (i.e., 90% quantile of accuracy across devices). We
show the results for FedProx in Figure 6, which presents the
accuracy changes by round. Due to space limitations, we
only show the results on two datasets: one using the CNN
model (Femnist) and another using the LSTM model (M-
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M-Type Femnist

Round Number

Fig. 6. The training performance of FedProx and FedAvg with and
without heterogeneity.

Type). Our observations are as follows.
• q-FedAvg, which is supposed to address fairness issues,
is less effective in ensuring fairness in heterogeneity-
aware settings. According to Table 3, the worst 10% ac-
curacy of q-FedAvg under heterogeneity-unaware settings
is higher than that of FedAvg, and q-FedAvg also obtains
lower accuracy variance on both datasets. However, un-
der heterogeneity-aware settings, the variance reduction
decreases from 26.3% to 21.7% on Femnist and from 10.5%
to 3.7% on M-Type, respectively. This is probably because q-
FedAvg cannot tackle the bias in device selection introduced
by state heterogeneity (see details in Section 7.3), which
makes it less effective in ensuring fairness.
• FedProx is less effective in improving the training pro-
cess with heterogeneity considered. According to Figure
6, FedProx only slightly outperforms FedAvg on M-Type,
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and heterogeneity causes an accuracy drop of 7.5%. On
Femnist, FedProx achieves the same performance as FedAvg
in heterogeneity-unaware settings and slightly underper-
forms FedAvg in heterogeneity-aware settings. heterogene-
ity causes an accuracy drop of 1.2%. Note that FedProx
incorporates hardware heterogeneity into its design while
leaving state heterogeneity unsolved. We manually checked
the involved devices and found that only 51.3% of devices
had undergone the training when the model reached the
target accuracy. As a result, the model may have been
dominated by these active devices and performed badly on
other devices.
Summary. The effectiveness of two state-of-the-art FL aggre-
gation algorithms – q-FedAvg and FedProx – is undermined
by heterogeneity. Specifically, with heterogeneity considered, the
accuracy variance reduction brought by q-FedAvg drops by 17.5%
(from 26.3% to 21.7%); due to heterogeneity, FedProx suffers from
a 1.2% ∼ 7.5% accuracy drop and results in 48.7% of clients
never contributing to the global model.

5.2 RQ2.2: Impact on Gradient-Compression Algo-
rithms
The cost of device-server communication is often reported
as a major bottleneck in FL [2], so we investigate exten-
sively studied gradient-compression algorithms to reduce
the communication cost. Specifically, we focus on three well
adopted gradient-compression algorithms: Structured Up-
dates [12], Gradient Dropping (GDrop) [54], and SignSGD [55].
For each of them, we adjusted the hyper-parameters to
achieve the highest accuracy through massive experiments.
For Structured Updates, we set the maximum rank of the de-
composed matrix to 100; for GDrop, we set the weight drop-
out threshold to 0.005; for SignSGD, we set the learning rate
to 0.001, the momentum constant to 0, and the weight decay
to 0. We used FedAvg with no compression as the baseline for
comparison. Besides accuracy and training time/rounds, we
also used the compression ratio (described in Section 3.4) as
a measurement metric for these algorithms. We present the
metric values of the three compression algorithms as well as
the baseline in heterogeneity-unaware and heterogeneity-
aware settings in Table 4. Similar to Section 5.1, we only
report the results on Femnist and M-Type. We summarize
our findings as follows.
• Heterogeneity introduces a similar accuracy drop for
compression algorithms as for the basic algorithm. We
measured the accuracy change introduced by heterogene-
ity (noted as Acc Change in Table 4). We observe that the
introduced accuracy degradation (3.1% on average) is simi-
lar to that which we observe in Section 4 (3.2% on average).
Accuracy dropped by an average of 1.7% on Femnist and
5.3% on M-Type. This is reasonable because heterogeneity
will not affect the compressed gradients.
• Gradient-compression algorithms barely speed up
model convergence in heterogeneity-aware settings. Al-
though all these algorithms compress the gradients and
reduce the communication cost significantly (the compres-
sion ratio ranges from 0.1% to 39.4%), the training time
is seldom shortened (only Structured Updates shortens the
convergence time by 0.93× at most) and is lengthened
in most cases. For example, on M-Type in heterogeneity-
aware environments, the training time is lengthened by 1.3×

to 2.5× for all compression algorithms. The training time
has not been shortened for two reasons. First, we find that
communication accounts for only a small portion of the total
learning time compared to on-device training. Most devices
can finish downloading and uploading in less than 30 sec-
onds for a model around 50M while spending more time
(1-5 minutes with 5 epochs) on training. Second, accuracy
increases slowly when the gradients are compressed and
heterogeneity is introduced (see Section 4), thus taking more
rounds to reach the target accuracy.
Summary. Heterogeneity does not deteriorate the accuracy loss
caused by gradient compression significantly. It results in a
similar accuracy drop (0.8% ∼ 8.5%) for compression algorithms
as for the basic algorithm (0.5% ∼ 9.2%).

5.3 RQ2.3: Impact on Client-Selection Algorithms
The client-selection algorithm is also a key component
that determines which clients to select in each round. Be-
sides Naı̈ve random selection, various client-selection algo-
rithms have been proposed to accelerate training [21] and
improve resource utilization [18], [57]. Intuitively, hetero-
geneity could affect the selection process because available
clients change over time. To measure its impact, we focus
on two representative algorithms: Oort [21] and FedCS. Both
of them are reported to shorten training time and improve
accuracy compared to random selection. Oort prioritizes the
use of those clients who have both data that offers the great-
est utility in improving model accuracy and the capability to
run training quickly. FedCS treats client selection as a max-
imization problem that selects as many clients as possible
under limited resources (deadline and bandwidth). FedCS
solves the problem by proposing a heuristic algorithm based
on the greedy algorithm for a maximization problem with a
knapsack constraint [58].

We use random selection as the baseline and run FedAvg
on our datasets in heterogeneity-aware and heterogeneity-
unaware settings. We report training time and accuracy
as the metrics given that both of them are proposed to
improve FL training performance. We reused Oort’s open-
source code and default hyper-parameters 5. We reproduced
FedCS’s algorithm and set the deadline to the optimal value
we found in Section 6. We summarize the results in Table 5,
from which we derive the following findings.
• Heterogeneity hinders client-selection algorithms from
accelerating FL training. According to Table 5, both Oort
and FedCS improve accuracy and shorten training time
compared to random selection in heterogeneity-unaware
settings. However, they become less effective when hetero-
geneity is involved. For example, in the M-Type dataset,
Oort achieves 6.9% higher accuracy in heterogeneity-
unaware settings but the accuracy increase is only 1.8%
when heterogeneity is introduced. Similarly, Oort shortens
training time by 40.5% in heterogeneity-unaware settings
and the saved time reduces to 19.6% in heterogeneity-aware
settings. What is worse, FedCS may even under-perform the
baseline in heterogeneity-aware settings.

5Oort has 14 hyper-parameters that can be adjusted, which made
it almost impossible to select optimal settings in our experiments. We
chose to use the default ones.
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Dataset Selection Algo. Acc (%)
Heter-unaware

Acc (%)
Heter-aware

Training time(H)
Heter-unaware

Training time(H)
Heter-aware

Femnist
Random 84.1 (0.0%) 83.0 (0.0%) 7.62 (0.0%) 9.45 (0.0%)

Oort 85.4 (1.5% ↑) 83.2 (0.2% ↑) 4.38 (42.5% ↓) 8.83 (6.5% ↓)
FedCS 84.8 (0.8% ↑) 82.0 (1.2% ↓) 5.25 (31.1% ↓) 9.96 (5.4% ↑)

M-Type
Random 10.51 (0.0%) 9.28 (0.0%) 3.95 (0.0%) 4.94 (0.0%)

Oort 11.24 (6.9% ↑) 9.45 (1.8% ↑) 2.35 (40.5% ↓) 3.97 (19.6% ↓)
FedCS 10.59 (0.8% ↑) 9.03 (2.7% ↓) 3.05 (22.8% ↓) 5.62 (13.8% ↑)

TABLE 5
The impact of heterogeneity on client-selection algorithms. Values in brackets represent the accuracy or training time change compared to the

baseline.

• Theoretical analysis. We analyze the reasons why client-
selection algorithms are hindered. The convergence speed
of Stochastic Gradient Descent (SGD) can be defined as the
reduction R of the divergence of model weight w from its
optimal w∗ in two consecutive rounds t and t+ 1 [59], [60].

R =
[
∥wt − w∗∥22 − ∥wt+1 − w∗∥22

]
If the learning rate of SGD is η and we use loss function

L to measure the training loss between input features x and
the label y, then wt+1 = wt − η ▽ L(wt(xi), yi). We set the
gradient Gt = ▽L(wt(xi), yi) for brevity. Then R can be
calculated from the former equation as:

R = −E
[
(wt+1 − w∗)T (wt+1 − w∗)− (wt − w∗)T (wt − w∗)

]
= −E

[
wT

t+1wt+1 − 2wt+1w
∗ − wT

t wt + 2wtw
∗
]

= −E
[
(wt − ηGt)

T (wt − ηGt) + 2ηGT
t w

∗ − wT
t wt

]
= −E

[
−2η(wt − w∗)Gt + η2GT

t Gt

]
= 2η(wt − w∗)E [Gt]− η2E [Gt]

T E [Gt]− η2Tr (V [Gt])

It has been proven that optimizing the first two terms
is intractable due to their joint dependency on E [Gt], and
client-selection algorithms, like Oort, are designed to gain
speed over random sampling by sampling important data
bins to minimize Tr (V [Gt]) (i.e., reducing the variance
of gradients while respecting the same expectation E [Gt])
[59], [61]. However, the clients with useful data (to improve
accuracy) will not always be available in heterogeneity-
aware settings (we will provide more detail in Section 7.3).
As a result, Tr (V [Gt]) cannot be effectively minimized and
the convergence speed slows. What is more, this selection
scheme would probably make the high-end devices dom-
inate the model, leading to a biased result. Finally, both
algorithms are less effective in heterogeneity-aware settings.

Summary. Heterogeneity hinders the state-of-the-art client-
selection algorithms from improving accuracy and accelerating
FL. For example, in M-Type, the accuracy increase brought by
Oort dropped by 73.9% (from 6.9% to 1.8%) due to heterogeneity.
Moreover, FedCS even slightly underperformed the baseline in
heterogeneity-aware settings.

6 RQ3: IMPACT ON FL CONFIGURATIONS

As shown in Section 3.3, many system configurations are
introduced due to heterogeneity. How to select these con-
figurations, however, has seldom been studied in previous
work due to the lack of a heterogeneity-aware FL platform
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Fig. 7. The impact of reporting deadline on convergence time and
accuracy.

along with a representative dataset (like the IMA dataset
in Section 3.2). In this subsection, we show how these
configurations have a non-trivial impact on the performance
of the FL process and provide empirical advice on their
selection.

6.1 Deadline
A deadline is set to avoid excessively long server waiting
times in each round of the FL process [1]. Deadline is inher-
ently related to heterogeneity: hardware heterogeneity will
introduce varied training speeds and state heterogeneity
will cause unexpected client drop-outs, so both will affect
the selection of the deadline. To measure the impact of
heterogeneity on deadline selection, we ran FedAvg on our
datasets and set different deadlines (from too tight to too
loose) in heterogeneity-aware and heterogeneity-unaware
settings. We controlled other configurations and hyper-
parameters to be consistent with and the same as those in
previous experiments. We show our results in Figure 7 and
summarize our findings below.
• In heterogeneity-aware settings, a small change in
deadline will lead to significant changes in accuracy and
training time. As illustrated in Figure 7, as the reporting
deadline increases, accuracy increases at first and then re-
mains stable. Taking Femnist as an example, accuracy rises
from 0.74 to 0.84 as the deadline increases from 210 seconds
to 290 seconds, and remains stable around 0.83–0.84 with an
even higher reporting deadline. The reason for such a trend
is that when the deadline is too tight (within a short period),
a large portion of clients, especially low-end devices, can
hardly (or seldom) contribute to the global training process;
when the deadline is too loose (within a long period), more
clients are involved in FL training but the model’s capacity
is reached.
• In heterogeneity-unaware settings, one can simply
choose a deadline that is loose enough and further
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lengthening it will not affect accuracy and training time.
As shown in Figure 7, once the deadline is loose enough
(≥250s for Femnist and ≥80s for M-Type), accuracy and
training time tend to be stable. This is because clients have
a unified training speed (no hardware heterogeneity) and
no clients will drop out (no state heterogeneity) 6. Perhaps
for the above reasons, the use of deadline and its influence
are mostly ignored [13], [25] or considered without in-
depth exploration [17], [18] in the existing FL literature. Our
experimental results demonstrate that deadline is a critical
configuration that should be set carefully in heterogeneity-
aware settings.
• To consider deadlines in heterogeneity-aware settings,
a proper value can be set by monitoring the proportion
of failed clients. According to Figure 8, there is an optimal
deadline that reaches the highest accuracy in the shortest
training time (e.g., 310s for Femnist and 85s for M-Type).
But despite its high impact, how to choose a proper deadline
(or a proper interval) has rarely been studied in the FL
literature. Thus, we present a heuristic approach to choosing
the optimal reporting deadline. The proposed approach is
based on an observation: the optimal deadline is correlated
to the client failure rate (Section 3.4). As shown in Figure 8,
for all tested datasets, the convergence time reaches the
optimal (shortest) when the client failure rate is around 10%.
This finding guides developers to select a proper deadline
based on the monitored client failure rate with only one
or several rounds. This is much more efficient compared to
exploring different deadlines with end-to-end experiments
(as our experiments did), each of which can take hundreds
of rounds. The saved effort (e.g., experiment time in GPU-
hours) can be up to two to three orders of magnitude, as
estimated.

6.2 Reporting Fraction
Reporting fraction is set to control whether a round can be
committed: in each round, if the proportion of successfully
uploaded clients is smaller than the fraction, this round will
be discarded and the global model will not be updated (fail
to commit this round). It can be regarded as a trade-off be-
tween failure tolerance and fairness. A lower fraction means
that more client failure is acceptable in each round (higher
failure tolerance), and a higher fraction means that more
clients are needed to commit this round (better fairness).
Since client failure and fairness issues arise from hetero-
geneity, the reporting fraction is also a critical configuration.
To measure the impact of heterogeneity on the selection
of a reporting fraction, we ran FedAvg on our datasets
and set different reporting fractions (from too small, 0.1,
to too big, 1.0) in heterogeneity-aware and heterogeneity-
unaware settings. We controlled for other configurations
(we made sure that the deadline was long enough) and
hyper-parameters to be consistent. We show our results in
Table 6 and summarize our findings below.
• Heterogeneity will exacerbate the adverse effects of an
improper (lower) reporting fraction. According to Table

6Although clients could have different numbers of training sam-
ples, the FL system would usually limit the maximum sample number
in each round to balance training time across clients [9].

6, accuracy generally decreases with lower reporting frac-
tions in both settings because a lower fraction will lead
to fewer client updates in each round. More importantly,
in heterogeneity-aware settings, the accuracy drop (training
time lengthened) caused by heterogeneity gets bigger when
the reporting fraction decreases. For example, on M-Type,
the accuracy drop increases from 11.7% to 26.4% when the
fraction decreases from 0.9 to 0.1, which means that the
reporting fraction becomes more influential to FL when
heterogeneity is considered. The reason is that low-end
devices are sensitive to the change in reporting fraction
in heterogeneity-aware settings and it becomes harder to
promise fairness, while devices have the same hardware
capacity and get the same chance to contribute to the global
model in heterogeneity-unaware settings.
• The optimal reporting fraction is different in
heterogeneity-aware and heterogeneity-unaware settings.
As shown in Table 6, the optimal reporting fraction is much
easier to set in heterogeneity-unaware settings (the optimal
value is 1.0), i.e., all clients upload their model updates.
Remember that these clients have the same training speed
and will never drop out, so setting the fraction to 1.0 will
not make any rounds fail. In the existing FL literature,
most work assumes that all selected clients could upload
successfully [15], [16], [18], which means that the reporting
fraction is set to 1.0 by default. Although our experiments
verify this setting is optimal under heterogeneity-unaware
settings, it could be rather different when heterogeneity is
involved. By contrast, in heterogeneity-aware settings, the
optimal reporting fraction is less than 1.0 (0.9 for Femnist
and 0.8 for M-Type). And if we set it to 1.0, most rounds
fail because client failure is almost inevitable (more detail in
Section 7). Note that reporting fraction is a trade-off between
failure tolerance and fairness and an improper value could
lead to a severe performance decrease, so it is important to
set it carefully. According to our experiments, an empirically
optimal fraction is 0.8 ∼ 0.9.

Summary. The optimal configuration is significantly different
in heterogeneity-aware and heterogeneity-unaware settings. The
deadline can simply be set to a value that is loose enough for
all clients in heterogeneity-unaware settings (e.g., 350s in the
Femnist dataset). However, in heterogeneity-aware settings, a
tight (<250s) or loose (>330s) deadline is sub-optimal. A suitable
deadline can be found quickly by monitoring the client failure rate
(when the rate is around 10%). The reporting fraction can simply
be set to 1.0 in heterogeneity-unaware settings since all clients
will never fail in each round, but the optimal value is 0.8 ∼ 0.9
in heterogeneity-aware settings.

7 RQ4: INFLUENTIAL FACTORS FOR IMPACT

Given the non-trivial negative impact of heterogeneity, we
dive deeper to analyze the influential factors for this impact.
Specifically, we first break heterogeneity down into two
types to analyze their individual impact (Section 7.1). Then
we report two phenomena that we have found to be partic-
ularly obvious in heterogeneity-aware settings: (1) selected
devices can fail to upload their model updates, which we
call device failure (Section 7.2); and (2) devices that succeed in
uploading make a biased contribution to the global model,
which we call participant bias (Section 7.3).
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Dataset Fraction Acc (%)
Heter-unaware

Acc (%)
Heter-aware

Training time(H)
Heter-unaware

Training time(H)
Heter-aware

Femnist

0.1 80.2 74.5 (7.1% ↓) 9.56 21.72 (2.27×)
0.3 83.2 80.2 (3.6% ↓) 8.53 11.83 (1.38×)
0.5 83.8 81.0 (3.3% ↓) 7.97 10.77 (1.35×)
0.7 83.9 82.0 (2.3% ↓) 7.62 10.05 (1.32×)
0.8 84.1 83.0 (1.3% ↓) 7.62 9.45 (1.24×)
0.9 84.1 83.1 (1.2% ↓) 7.62 8.89 (1.17×)
1.0 84.3 - 7.62 -

M-Type

0.1 9.53 7.01 (26.44% ↓) 6.49 12.30 (1.90×)
0.3 9.94 8.38 (15.69% ↓) 5.75 6.92 (1.20×)
0.5 10.23 8.64 (15.54% ↓) 5.05 6.53 (1.29×)
0.7 10.44 8.86 (15.13% ↓) 5.33 6.32 (1.19×)
0.8 10.44 9.31 (10.82% ↓) 3.99 4.78 (1.20×)
0.9 10.51 9.28 (11.70% ↓) 3.95 4.94 (1.25×)
1.0 10.52 - 3.95 -

TABLE 6
The performance of FedAvg with varied reporting fraction settings (0.1, 0.3, 0.5, 0.7, 0.8, 0.9, 1.0). Values in brackets represent the accuracy drop

or training time increase compared to those in heterogeneity-unaware settings (the larger the value, the greater the negative effect of
heterogeneity). − means that most rounds fail. The optimal value is in bold.
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Fig. 9. A breakdown of the impact of different types of heterogeneity.
State heterogeneity causes more performance degradation than hard-
ware heterogeneity. “Heter” is short for heterogeneity.

7.1 Breakdown of Heterogeneity
The preceding results indicate the joint impact of two types
of heterogeneity. To analyze their individual impact, we
disabled hardware heterogeneity, i.e., all devices had the
same computational and communication capacities (noted
as “w/o hardware heter”). Similarly, we disabled state
heterogeneity, i.e., devices were always available at any time
and would not drop out (noted as “w/o state heter”). We
show accuracy changes with training time in Figure 9.
• Both state heterogeneity and hardware heterogeneity
slow down model convergence. According to Figure 9, state
heterogeneity leads to a comparable increase in training
time to hardware heterogeneity, i.e., 1.72× vs. 1.26× on M-
Type and 2.34× vs. 2.62× on Femnist. This is reasonable
because both drop-outs (introduced by state heterogeneity)

and low-end devices (introduced by hardware heterogene-
ity) affect training time.
• State heterogeneity has more influence on model ac-
curacy than hardware heterogeneity. As shown in Figure
9, state heterogeneity leads to a more significant accuracy
drop than hardware heterogeneity, i.e., 9.5% vs. 0.4% on
M-Type and 1.1% vs. 0.1% on Femnist. Note that existing
FL-related studies usually ignore state heterogeneity (see
Section 2). Our results show that state heterogeneity is more
responsible for a drop in model accuracy, which explains
why FedProx (which considers hardware heterogeneity) is
less effective given both types of heterogeneity (refer to
Section 5.1).

7.2 Device Failure

Device failure refers to the phenomenon that a selected
device misses the deadline to upload the model updates
in a round. It can slow down model convergence and waste
valuable device resources (computations, energy, etc.). How-
ever, device failure has seldom been studied in prior work,
probably because it is directly related to FL heterogeneity.

Heuristically, we categorize device failure with three
possible causes: (1) Network failure is detected if the device
takes an excessively long time (default: 3× the average) to
communicate with the server due to a slow or unreliable
network connection. (2) Interruption failure is detected if
the device fails to upload the model updates due to user
interruption, e.g., the device is taken off charge during
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Fig. 10. The influence of different kinds of heterogeneity on device
failure.

training. (3) Training failure is detected when the device
takes too long for the training.

To understand device failure, we zoomed into the previ-
ous experiments under varied round deadlines. We varied
the deadline because we found that the proportion of failed
devices was greatly affected by it. Similar to Section 7.1,
we also checked hardware heterogeneity’s and state hetero-
geneity’s influence on device failure. The key questions we
want to answer here are: (1) how often devices may fail and
what the corresponding reasons for that failure are; and (2)
which type of heterogeneity is the major factor. The results
are illustrated in Figures 8 and 10, from which we make the
following key observations.

• Heterogeneity introduces non-trivial device failure even
when an optimal deadline setting is given. The overall
proportion of failed devices reaches 11.6% on average, with
an optimal deadline setting that achieves the shortest train-
ing time. A tight deadline increases the failure proportion
because devices receive less time to finish their training
tasks. We look into three types of failure and find the
following. (1) Network failure accounts for a small fraction
of device failure (typically less than 5%) and it is more stable
than other types of failure. (2) Interruption failure is affected
by the deadline but in a moderate way. We further break
down interruption failure into three sub-categories corre-
sponding to three restrictions on training [1]. Specifically,
results show that the training process is interrupted by user
interaction, battery charge off, and network changes, with a
probability of 46.06%, 36.96%, and 17.78% respectively. (3)
Training failure is heavily affected by deadline. This type of
failure accounts for the majority of device failures when the
deadline is too tight. Even with the optimal deadline setting,
this type of failure still occurs because we observe that some
low-end devices with too much local data sometimes fail to
meet the deadline.

• Hardware heterogeneity leads to more device failure
than state heterogeneity. According to Figure 10, hardware
heterogeneity is more responsible for device failure than
state heterogeneity. For example, on M-Type, hardware het-
erogeneity causes 14% of failed devices on average while
state heterogeneity causes only 2.5%. This is probably be-
cause when hardware heterogeneity is considered, there are
low-end devices that require a longer training time.
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Fig. 11. The distribution of computations across devices during FL
training.
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Fig. 12. A breakdown of the impact of different types of heterogeneity on
participant bias.

7.3 Participant Bias

Participant bias refers to the phenomenon that devices do
not participate in FL with the same probability. It can lead
to different contributions to the global model, making some
devices under-represented.

To measure the participant bias introduced by hetero-
geneity, we ran the same FL tasks as in Section 4. We took
the number of computations to reflect the devices’ degree of
participation. Since it is difficult to compare the computation
of different models directly, we divided them by the number
of computations in a training epoch (noted as computation
loads). Figure 11 illustrates the distribution of computation
loads across devices when the global model converges. As
in Section 7.1, we also break our results down to explore the
impact of different types of heterogeneity. We summarize
our findings as follows.
• Computation loads get more uneven in heterogeneity-
aware settings. Variance increases by 2.4× (Reddit) to 10.7×
(Femnist). Compared to heterogeneity-unaware environ-
ments, where every device participates with equal proba-
bility, computation loads tend to polarize in heterogeneity-
aware environments. On Celeba, the maximum computa-
tion load increases by 1.17×.
• The number of inactive devices increases significantly
in heterogeneity-aware settings. The median computation
load dropped by 28% (Femnist) to 75% (Reddit), indicat-
ing that more inactive devices appeared. Compared to the
heterogeneity-unaware environment, where the top 30% of
devices contributed 54% of all computations, the top 30%
of devices in heterogeneity-aware environments contributed
81% of all computations, putting the inactive devices at a



IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. XX, NO. X, AUGUST 2022 14

disadvantage.
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Fig. 13. Percentage of partici-
pating devices over time.

• Up to 30% of devices
had not participated in the
FL process when the global
model reached the target
accuracy in heterogeneity-
aware settings. To investigate
the reasons for these inactive
devices, we inspected the per-
centage of participating de-
vices over time and demon-
strate the result in Figure 13.
We found that when the model converged (6-24 hours in
our experiments), more than 30% of devices had not partic-
ipated. In heterogeneity-unaware environments, the partic-
ipating devices accumulated quickly and soon covered the
total population in 12 hours, while in heterogeneity-aware
environments, accumulation slowed a lot and it took much
longer to converge (more than 48 hours).
• State heterogeneity is more responsible for participant
bias. As shown in Figure 12, state heterogeneity is the main
reason for computation bias. It causes a similar computation
distribution as that in heterogeneity-aware environments.
This is probably because state heterogeneity introduces bias
in device selection, i.e., although the server selects devices
randomly, the available devices that can be selected highly
depend on whether the device can meet the state criteria
(see Section 3.2.1).
Summary. State heterogeneity has more influence than hardware
heterogeneity on accuracy (e.g., a drop of 9.5% vs. 0.4% in M-
Type). In addition, we identify device failure and participant bias
as two influential factors for the impact of heterogeneity. For
device failure, 11.6% of devices would fail to upload the model
updates in each round on average if no countermeasures are
taken, resulting in a waste of computational resources. Excessive
training time, excessive transmission time, and user interruption
account for 55%, 25%, and 20% of the failures, respectively. For
participant bias, the top 30% of active devices contribute 81%
of all computations and up to 30% of the devices have never
participated in the FL process when the global model converges,
indicating that the model could be dominated by the most active
devices.

8 IMPLICATIONS

In this section, we discuss actionable implications for FL
algorithm designers and FL system providers based on the
above findings.

8.1 For FL Algorithm Designers

Taking heterogeneity into consideration. As demonstrated
in our study, heterogeneity introduces a non-trivial accuracy
drop and a slowdown in training in FL, and also affects
the effectiveness of some proposed methods. These findings
encourage FL researchers to consider heterogeneity, espe-
cially state heterogeneity. On the one hand, when designing
approaches or algorithms, researchers should consider cir-
cumstances that are common in heterogeneity-aware envi-
ronments but do not exist in heterogeneity-unaware envi-
ronments. For example, when designing a device-selection

approach, researchers should be aware that some devices
can be unavailable at a given time and the server cannot se-
lect as it wants. When designing an aggregation algorithm,
researchers should guarantee that the algorithm still works
given inevitable device failure. On the other hand, when
evaluating FL algorithms, researchers should add necessary
heterogeneity settings in the experiments according to the
targeted scenario. For example, if the algorithm has an
additional system overhead, this may further widen the gap
in training time between different devices and should be
considered during the evaluation.

Reducing device failure through a “proactive alert-
ing” technique. In Section 7.2, we find that around 10%
of devices fail to upload their model updates in typical
settings. The reasons include excessive training time, an
unstable network connection, and device drop-out caused
by state changes. Existing efforts have explored dynamic
deadlines [43] and tolerating partial work [17] to handle
device failure. However, these algorithms are inadequate to
handle failure caused by unstable network connections and
drop-outs because they are highly dependent on the devices’
states. A “proactive alerting” technique can be explored by
predicting devices’ future states and network conditions
based on historical data. The server should assign low
priority to the devices that are likely to drop out. In this
way, overall device failure can be reduced and more updates
can be aggregated, thus saving the hardware resources and
accelerating the learning process.

Resolving bias in device selection. In Section 7.3, we
find that the global model is dominated by some active
devices (the top 30% of devices may contribute 81% of the
total computation). The reason is that, due to state hetero-
geneity, devices do not participate in the learning process
with the same probability even when they are randomly
selected, and some (more than 30% in our experiments) have
never participated when the model reaches a local optimum.
To alleviate bias in device selection, a naive approach is
to set a participation time window (e.g., one day) and
omit the devices that have participated in this window.
“Fairness” is guaranteed, but this may remarkably increase
the training time of an FL task, and the length of the time
window should be carefully adjusted. Adjusting the local
objective (loss function) or re-weighting updates may serve
as alternatives.

8.2 For FL System Providers

Building heterogeneity-aware platforms. Our results show
that a heterogeneity-aware platform is necessary for devel-
opers to precisely understand how their model will perform
in real-world settings. However, existing platforms [25],
[62], [63], [64], [65] fail to incorporate heterogeneity into
their design. Our work provides a reference implementation
and can be integrated easily into these FL platforms. We also
encourage system providers to collect data that fit different
scenarios to further help the FL community.

Optimizing on-device training time instead of com-
pression in unmetered (e.g., WiFi) networks. In Section 5.2,
we find that gradient-compression algorithms barely speed
up model convergence. The time spent on communication
is relatively small in WiFi environments compared to the
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M-Type.

time spent on training. As a result, an orthogonal way to
accelerate FL is to optimize the on-device training time.
Possible solutions include neural architecture search (NAS)
[66], [67] and using hardware AI accelerators like mobile
GPU and digital signal processors (DSPs).

9 DISCUSSION

We next discuss open problems along with the generaliz-
ability of our study.

Bias of our IMA dataset. The device state traces (Section
3.2.1) are collected from our IMA dataset (app-specific),
whose users mainly reside in Southeast Asia and Latin
America (geo-specific). The traces may not be fully rep-
resentative of other FL scenarios. However, we believe
that our findings are still faithful because (1) FL tasks are
always app-specific, and improving IMA experience is a
key scenario of FL [1], [9], [10]; and (2) our traces are
large enough to cover the general state change patterns of
smartphones. What is more, the patterns are consistent with
prior work [9], as previously mentioned. Furthermore, new
user traces can be seamlessly plugged into our platform,
where researchers can reproduce all experiments mentioned
in this paper.

Consistency with results reported by real-world FL
systems. As with all existing FL platforms [25], [62], [63],
[64], [65], our platform (Section 3.3) performs FL tasks in a
simulation way. We carefully designed the platform to sim-
ulate real-world FL systems by considering heterogeneity.
However, we acknowledge that a gap may still exist for
unexpected FL glitches, e.g., software failure. We plan to
further validate our platform with real-world deployment.
Nevertheless, the observed patterns from our platform, e.g.,
device availability (Figure 14) and failure proportion (Figure
8), are consistent with the results reported from a large-scale
FL deployment by Google [1]. Therefore, we believe that our
findings are still valid.

Validity of randomly assigning state traces and training
data to devices. In practice, heterogeneity is inherently
coupled with non-IID data distribution [2]. In this study,
we decouple heterogeneity from data distribution (i.e., ran-
domly assigning a state trace to each device) to generalize
our traces to other benchmark datasets. We use M-Type to
verify this design because it shares the same user population
with our traces. According to Figure 15, the gap between
the coupled case and the decoupled case is trivial com-
pared to the gap between the heterogeneity-unaware and
heterogeneity-aware settings. This justifies our design to
decouple heterogeneity from any third-party datasets.

More delicate characterization of heterogeneity. In the
real world, the severity of heterogeneity varies across pop-
ulations/platforms/applications. In our settings, we choose
”Heter-aware” and ”Heter-unaware”, which represent the
two ends of the heterogeneity spectrum, to demonstrate its
impact. Meanwhile, our dataset also makes it possible to
support a more delicate characterization. With our dataset,
FL developers can easily remove/duplicate high-end/low-
end or active/inactive devices to better reflect the target
population. As a result, by controlling the proportion of
different types of devices, it is possible to characterize
heterogeneity more delicately.

Other types of heterogeneity. In this paper, we focus
on the impact of hardware and state heterogeneity, but
there are also other types of heterogeneity in FL. One is
data heterogeneity [2], [8], which resides in the skewed
and unbalanced local data distribution (non-IID data dis-
tribution) across devices. Data heterogeneity is one of the
basic assumptions in FL and existing work [7], [20], [68]
has conducted in-depth research on it. Since the benchmark
datasets used in our experiments are all non-IID datasets,
data heterogeneity is inherently considered in our study.
Other types of heterogeneity [2], like software or platform,
are highly relevant to the implementation of an FL system
and hard to generalize. We leave those for future work to
explore.

10 CONCLUSION AND FUTURE WORK

We have collected large-scale real-world data and con-
ducted extensive experiments to anatomize the impact of
heterogeneity. Results show that (1) heterogeneity causes
non-trivial performance degradation in FL tasks – up to a
9.2% accuracy drop and 2.32× slowdown in convergence;
(2) recent advanced FL algorithms can be compromised
and rethought with heterogeneity considered; (3) the set-
ting of key FL configurations (deadline and reporting frac-
tion) can be significantly different in heterogeneity-aware
and heterogeneity-unaware settings; (4) state heterogeneity,
which is usually ignored in existing studies, is more re-
sponsible for the aforementioned performance degradation
than hardware heterogeneity; and (5) device failure and
participant bias are two potential impact factors for perfor-
mance degradation. These results suggest that heterogeneity
should be taken into consideration in further research and
that optimizations to mitigate the negative impact of hetero-
geneity are promising.

In the future, we plan to enhance FLASH in the following
aspects: (1) FL attacks and countermeasures. There have been
plenty of works [14], [38] that successfully attack FL through
data poisoning or Byzantine fault. Correspondingly, a few
countermeasures (e.g., secure aggregation [36]) are pro-
posed to further enhance the data privacy in FL. The impact
of heterogeneity on those approaches could be studied in
the future. (2) Training efficiency. FLASH currently carries
out the per-client model training in a sequential manner. To
speed up the simulation, we plan to add in-parallel training
support on multi-GPU or multi-server settings.



IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. XX, NO. X, AUGUST 2022 16

ACKNOWLEDGMENTS

This work was supported by the National Key Research and
Development Program of China under the grant number
2020YFB2104100, the NSFC under grant numbers 62172008
and 62102045, and National Natural Science Fund for the
Excellent Young Scientists Fund Program (Overseas). Zhen-
peng Chen’s work was supported by the ERC Advanced
Fellowship under grant number 741278 (EPIC: Evolutionary
Program Improvement Collaborators). Chengxu Yang and
Mengwei Xu contributed equally to the work. Contact the
corresponding author Xuanzhe Liu via xzl@pku.edu.cn.

REFERENCES

[1] K. Bonawitz, H. Eichner, W. Grieskamp, D. Huba, A. Ingerman,
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[68] J. Konečnỳ, H. B. McMahan, D. Ramage, and P. Richtárik, “Fed-
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