10,398 research outputs found

    Turbulent pitch-angle scattering and diffusive transport of hard-X-ray producing electrons in flaring coronal loops

    Full text link
    Recent observations from {\em RHESSI} have revealed that the number of non-thermal electrons in the coronal part of a flaring loop can exceed the number of electrons required to explain the hard X-ray-emitting footpoints of the same flaring loop. Such sources cannot, therefore, be interpreted on the basis of the standard collisional transport model, in which electrons stream along the loop while losing their energy through collisions with the ambient plasma; additional physical processes, to either trap or scatter the energetic electrons, are required. Motivated by this and other observations that suggest that high energy electrons are confined to the coronal region of the source, we consider turbulent pitch angle scattering of fast electrons off low frequency magnetic fluctuations as a confinement mechanism, modeled as a spatial diffusion parallel to the mean magnetic field. In general, turbulent scattering leads to a reduction of the collisional stopping distance of non-thermal electrons along the loop and hence to an enhancement of the coronal HXR source relative to the footpoints. The variation of source size LL with electron energy EE becomes weaker than the quadratic behavior pertinent to collisional transport, with the slope of L(E)L(E) depending directly on the mean free path λ\lambda again pitch angle scattering. Comparing the predictions of the model with observations, we find that λ∼\lambda \sim(108−109)(10^8-10^9) cm for ∼30\sim30 keV, less than the length of a typical flaring loop and smaller than, or comparable to, the size of the electron acceleration region.Comment: 25 pages, 5 figures, accepted for publication in Astrophysical Journa

    Collisional relaxation of electrons in a warm plasma and accelerated nonthermal electron spectra in solar flares

    Get PDF
    Extending previous studies of nonthermal electron transport in solar flares which include the effects of collisional energy diffusion and thermalization of fast electrons, we present an analytic method to infer more accurate estimates of the accelerated electron spectrum in solar flares from observations of the hard X-ray spectrum. Unlike for the standard cold-target model, the spatial characteristics of the flaring region, especially the necessity to consider a finite volume of hot plasma in the source, need to be taken into account in order to correctly obtain the injected electron spectrum from the source-integrated electron flux spectrum (a quantity straightforwardly obtained from hard X-ray observations). We show that the effect of electron thermalization can be significant enough to nullify the need to introduce an {\it ad hoc} low-energy cutoff to the injected electron spectrum in order to keep the injected power in non-thermal electrons at a reasonable value. Rather the suppression of the inferred low-energy end of the injected spectrum compared to that deduced from a cold-target analysis allows the inference from hard X-ray observations of a more realistic energy in injected non-thermal electrons in solar flares.Comment: accepted for publication in Ap

    Mapping constrained optimization problems to quantum annealing with application to fault diagnosis

    Get PDF
    Current quantum annealing (QA) hardware suffers from practical limitations such as finite temperature, sparse connectivity, small qubit numbers, and control error. We propose new algorithms for mapping boolean constraint satisfaction problems (CSPs) onto QA hardware mitigating these limitations. In particular we develop a new embedding algorithm for mapping a CSP onto a hardware Ising model with a fixed sparse set of interactions, and propose two new decomposition algorithms for solving problems too large to map directly into hardware. The mapping technique is locally-structured, as hardware compatible Ising models are generated for each problem constraint, and variables appearing in different constraints are chained together using ferromagnetic couplings. In contrast, global embedding techniques generate a hardware independent Ising model for all the constraints, and then use a minor-embedding algorithm to generate a hardware compatible Ising model. We give an example of a class of CSPs for which the scaling performance of D-Wave's QA hardware using the local mapping technique is significantly better than global embedding. We validate the approach by applying D-Wave's hardware to circuit-based fault-diagnosis. For circuits that embed directly, we find that the hardware is typically able to find all solutions from a min-fault diagnosis set of size N using 1000N samples, using an annealing rate that is 25 times faster than a leading SAT-based sampling method. Further, we apply decomposition algorithms to find min-cardinality faults for circuits that are up to 5 times larger than can be solved directly on current hardware.Comment: 22 pages, 4 figure

    A Novel Scheme to Search for Fractional Charge Particles in Low Energy Accelerator Experiments

    Full text link
    In the Standard Model of particle physics, the quarks and anti-quarks have fractional charge equal to ±1/3\pm1/3 or ±2/3\pm2/3 of the electron's charge. There has been a large number of experiments searching for fractional charge, isolatable, elementary particles using a variety of methods, including e+e−e^+e^- collisions using dE/dx ionization energy loss measurements, but no evidence has been found to confirm existence of free fractional charge particles, which leads to the quark confinement theory. In this paper, a proposal to search for this kind particles is presented, which is based on the conservation law of four-momentum. Thanks to the CLEOc and BESIII detectors' large coverage, good particle identification, precision measurements of tracks' momenta and their large recorded data samples, these features make the scheme feasible in practice. The advantage of the scheme is independent of any theoretical models and sensitive for a small fraction of the quarks transitioning to the unconfinement phase from the confinement phase.Comment: 9 page

    An optically activated cantilever using photomechanical effects in dye-doped polymer fibers

    Full text link
    We report on what we believe is the first demonstration of an optically activated cantilever due to photomechanical effects in a dye-doped polymer optical fiber. The fiber is observed to bend when light is launched off-axis. The displacement angle monotonically increases as a function of the distance between the illumination point and the fiber axis, and is consistent with differential light-induced length changes. The photothermal and photo-reorientation mechanisms, each with its own distinct response time, are proposed to explain the observed time dependence. The measured degree of bending is consistent with a model that we have proposed which includes coupling between photoisomerization and heating. Most importantly, we have discovered that at high light intensity, a cooperative release of stress results in cis-to-trans isomerization that yields a large and abrupt length change.Comment: 13 pages, 16 figure
    • …
    corecore