8,813 research outputs found

    Effects of Volcanic Emissions on Clouds During Kilauea Degassing Events

    Get PDF
    Aerosols influence Earths radiative balance directly by scattering and absorbing solar radiation, and indirectly by modifying cloud properties. Current scientific consensus indicates that these effects may offset as much as 50% of the warming due to greenhouse gas emissions. Over the last two decades dramatic volcanic events in Hawaii have produced localized aerosol emissions in otherwise clean environments. These are natural experiments" where the aerosol effects on clouds and climate can be partitioned from other effects like meteorology and industrial emissions. Therefore, these events provide a unique opportunity to learn about possible effects of aerosol pollution on climate through cloud modification. In this work we use the version 5 of the NASA Goddard Earth Observing System (GEOS-5) and satellite retrievals to analyze and evaluate the strength of the aerosol indirect effect on liquid and ice clouds during the 2008 and 2018 Kilauea degassing events using different emissions scenarios (0, 1, and 5 actual emissions). Our results suggested that the 2018 event was stronger and more regionally significant with respect to cloud formation process for both liquid and ice clouds, while the 2008 affected local liquid clouds only. GEOS-5 predictions reproduced spatial patterns for all parameters, however better precision could be gained by using more accurate plume parameters for height and ash concentration

    Adversarial Sparse-View CBCT Artifact Reduction

    Full text link
    We present an effective post-processing method to reduce the artifacts from sparsely reconstructed cone-beam CT (CBCT) images. The proposed method is based on the state-of-the-art, image-to-image generative models with a perceptual loss as regulation. Unlike the traditional CT artifact-reduction approaches, our method is trained in an adversarial fashion that yields more perceptually realistic outputs while preserving the anatomical structures. To address the streak artifacts that are inherently local and appear across various scales, we further propose a novel discriminator architecture based on feature pyramid networks and a differentially modulated focus map to induce the adversarial training. Our experimental results show that the proposed method can greatly correct the cone-beam artifacts from clinical CBCT images reconstructed using 1/3 projections, and outperforms strong baseline methods both quantitatively and qualitatively

    Spectroscopic Evidence for the Specific Na+ and K+ Interactions with the Hydrogen-bonded Water Molecules at the Electrolyte Aqueous Solution Surfaces

    Full text link
    Sum frequency generation vibrational spectra of the water molecules at the NaF and KF aqueous solution surfaces showed significantly different spectral features and different concentration dependence. This result is the first direct observation of the cation effects of the simple alkali cations, which have been believed to be depleted from the aqueous surface, on the hydrogen bonding structure of the water molecules at the electrolyte solution surfaces. These observations may provide important clue to understand the fundamental phenomenon of ions at the air/water interface.Comment: 15 pages, 2 figure

    Mortality time of immature stages of susceptible and resistant strains of Sitophilus oryzae (L.) exposed to different phosphine concentrations

    Get PDF
    The mortality time on egg, larvae and pupae of four strains with resistance factor 1, 69, 160 and 295 to phosphine of Sitophilus oryzae (L.), which were expressed in R1, R69, R160 and R295 in this report, respectively, were investigated with stable concentrations of 100, 300, 500, 700 and 900 mL m-3 of phosphine in a well sealed fumigation chamber. The mortality time on all immature stages was about 10 d for strain R1, more than 15 d for all resistance strains exposed to 100 mL m-3 of phosphine. Mortality time on egg and larvae of R1 was 9 and 6 d at 300 and 700 mL m-3, respectively. But it was only 4 d and 2 d for pupae of R1 at 700 and 900 mL m-3, respectively. The mortality time on immature stages of R69 was 12 and 5 d with the 300 and 700 mL m-3, respectively. And that on immature stages of strain R160 and R295 was 15 and 10 d with phosphine of 300-700 mL m-3, respectively. With the fumigant of 900 mL m-3, the full death time were 5 d for larval of all strains, 5d for pupae and egg of R1 and more that 8 or 9 d for pupae and egg of three resistance strains. The egg and pupae of S. oryzae were the most tolerant stages to phosphine both for susceptible and resistance strains.Keywords: Sitophilius oryzae, Immature stage, Phosphine, Mortality tim

    Discovery of Eight z ~ 6 Quasars in the Sloan Digital Sky Survey Overlap Regions

    Full text link
    We present the discovery of eight quasars at z~6 identified in the Sloan Digital Sky Survey (SDSS) overlap regions. Individual SDSS imaging runs have some overlap with each other, leading to repeat observations over an area spanning >4000 deg^2 (more than 1/4 of the total footprint). These overlap regions provide a unique dataset that allows us to select high-redshift quasars more than 0.5 mag fainter in the z band than those found with the SDSS single-epoch data. Our quasar candidates were first selected as i-band dropout objects in the SDSS imaging database. We then carried out a series of follow-up observations in the optical and near-IR to improve photometry, remove contaminants, and identify quasars. The eight quasars reported here were discovered in a pilot study utilizing the overlap regions at high galactic latitude (|b|>30 deg). These quasars span a redshift range of 5.86<z<6.06 and a flux range of 19.3<z_AB<20.6 mag. Five of them are fainter than z_AB=20 mag, the typical magnitude limit of z~6 quasars used for the SDSS single-epoch images. In addition, we recover eight previously known quasars at z~6 that are located in the overlap regions. These results validate our procedure for selecting quasar candidates from the overlap regions and confirming them with follow-up observations, and provide guidance to a future systematic survey over all SDSS imaging regions with repeat observations.Comment: AJ in press (8 pages

    Close companions to two high-redshift quasars

    Get PDF
    We report the serendipitous discoveries of companion galaxies to two high-redshift quasars. SDSS J025617.7+001904 is a z=4.79 quasar included in our recent survey of faint quasars in the SDSS Stripe 82 region. The initial MMT slit spectroscopy shows excess Lyman alpha emission extending well beyond the quasar's light profile. Further imaging and spectroscopy with LBT/MODS1 confirms the presence of a bright galaxy (i_AB = 23.6) located 2arcsec (12 kpc projected) from the quasar with strong Lyman alpha emission (EW_0 ~ 100Ang) at the redshift of the quasar, as well as faint continuum. The second quasar, CFHQS J005006.6+344522 (z=6.25), is included in our recent HST SNAP survey of z~6 quasars searching for evidence of gravitational lensing. Deep imaging with ACS and WFC3 confirms an optical dropout ~4.5 mag fainter than the quasar (Y_AB=25) at a separation of 0.9 arcsec. The red i_775-Y_105 color of the galaxy and its proximity to the quasar (5 kpc projected if at the quasar redshift) strongly favor an association with the quasar. Although it is much fainter than the quasar it is remarkably bright when compared to field galaxies at this redshift, while showing no evidence for lensing. Both systems may represent late-stage mergers of two massive galaxies, with the observed light for one dominated by powerful ongoing star formation and for the other by rapid black hole growth. Observations of close companions are rare; if major mergers are primarily responsible for high-redshift quasar fueling then the phase when progenitor galaxies can be observed as bright companions is relatively short.Comment: 13 pages, 12 figures, accepted for publication in A

    Conditional Graphical Lasso for Multi-label Image Classification

    Get PDF
    © 2016 IEEE. Multi-label image classification aims to predict multiple labels for a single image which contains diverse content. By utilizing label correlations, various techniques have been developed to improve classification performance. However, current existing methods either neglect image features when exploiting label correlations or lack the ability to learn image-dependent conditional label structures. In this paper, we develop conditional graphical Lasso (CGL) to handle these challenges. CGL provides a unified Bayesian framework for structure and parameter learning conditioned on image features. We formulate the multi-label prediction as CGL inference problem, which is solved by a mean field variational approach. Meanwhile, CGL learning is efficient due to a tailored proximal gradient procedure by applying the maximum a posterior (MAP) methodology. CGL performs competitively for multi-label image classification on benchmark datasets MULAN scene, PASCAL VOC 2007 and PASCAL VOC 2012, compared with the state-of-the-art multi-label classification algorithms

    Constraining C iii] Emission in a Sample of Five Luminous z = 5.7 Galaxies

    Full text link
    Recent observations have suggested that the CIII]λ1907/1909\lambda1907/1909 emission lines could be alternative diagnostic lines for galaxies in the reionization epoch. We use the F128N narrowband filter on the Hubble Space Telescope's (HST\it{HST}) Wide Field Camera 3 (WFC3) to search for CIII] emission in a sample of five galaxies at z = 5.7 in the Subaru Deep Field and the Subaru/XMM-Newton Deep Field. Using the F128N narrowband imaging, together with the broadband imaging, we do not detect CIII] emission for the five galaxies with JABJ_{\rm{AB}} ranging from 24.10 -- 27.00 in our sample. For the brightest galaxy J132416.13+274411.6 in our sample (z = 5.70, JAB=24.10J_{\rm{AB}} = 24.10), which has a significantly higher signal to noise, we report a CIII] flux of 3.34±1.81×10−183.34\pm1.81 \times 10^{-18} erg s−1 cm−2\mathrm{erg\ s^{-1}\ cm^{-2}}, which places a stringent 3-σ\rm\sigma upper limit of 5.43×10−185.43\times 10^{-18} $\mathrm{erg\ s^{-1}\ cm^{-2}}onCIII]fluxand6.57A˚ ontheCIII]equivalentwidth.Usingthestackedimage,weputa3− on CIII] flux and 6.57 \AA\ on the CIII] equivalent width. Using the stacked image, we put a 3-\rm\sigmaupperlimitonthemeanCIII]fluxof upper limit on the mean CIII] flux of \mathrm{2.55\times10^{-18}\ erg\ s^{-1}\ cm^{-2}},anda3−, and a 3-\rm\sigmaupperlimitonthemeanCIII]equivalentwidthof4.20A˚forthissampleofgalaxiesatz=5.70.CombinedwithstrongCIII]detectionreportedamonghigh−zgalaxiesintheliterature,ourobservationssuggestthattheequivalentwidthsofCIII]fromgalaxiesatz upper limit on the mean CIII] equivalent width of 4.20 {\AA} for this sample of galaxies at z = 5.70. Combined with strong CIII] detection reported among high-z galaxies in the literature, our observations suggest that the equivalent widths of CIII] from galaxies at z >$ 5.70 exhibit a wide range of distribution. Our strong limits on CIII] emission could be used as a guide for future observations in the reionization epoch

    SDSS J143030.22-001115.1: A misclassified narrow-line Seyfert 1 galaxy with flat X-ray spectrum

    Full text link
    We used multi-component profiles to model Hβ\beta and [O III]λλ\lambda \lambda 4959,5007 lines for SDSS J143030.22-001115.1, a narrow-line Seyfert 1 galaxy (NLS1) in a sample of 150 NLS1s candidates selected from the Sloan Digital Sky Survey (SDSS) Early Data Release (EDR). After subtracting the Hβ\beta contribution from narrow line regions (NLRs), we found that its full width half maximum (FWHM) of broad Hβ\beta line is nearly 2900 \kms, significantly larger than the customarily adopted criterion of 2000 \kms. With its weak Fe II multiples, we think that SDSS J143030.22-001115.1 can't be classified as a genuine NLS1. When we calculate the virial black hole masses of NLS1s, we should use the Hβ\beta linewidth after subtracting the Hβ\beta contribution from NLRs.Comment: 7 pages, 1 table, accepted by ChJA
    • …
    corecore