22,303 research outputs found

    The tyrosine kinase and mitogen-activated protein kinase pathways mediate multiple effects of estrogen in hippocampus

    Get PDF

    Asteroseismic analysis of solar-mass subgiants KIC 6442183 and KIC 11137075 observed by Kepler

    Full text link
    Asteroseismology provides a powerful way to constrain stellar parameters. Solar-like oscillations have been observed on subgiant stars with the \emph{Kepler\/} mission. The continuous and high-precision time series enables us to carry out a detailed asteroseismic study for these stars. We carry out data processing of two subgiants of spectral type G: KIC 6442183 and KIC 11137075 observed with the \emph{Kepler} mission, and perform seismic analysis for the two evolved stars. We estimate the values of global asteroseismic parameters: Δν=64.9±0.2\Delta\nu=64.9\pm 0.2 μ\muHz and νmax=1225±17\nu_{\rm max}=1225 \pm 17 μ\muHz for KIC 6442183, Δν=65.5±0.2\Delta\nu=65.5\pm 0.2 μ\muHz and νmax=1171±8\nu_{\rm max}=1171 \pm 8 μ\muHz for KIC 11137075, respectively. In addition, we extract the individual mode frequencies of the two stars. We compare stellar models and observations, including mode frequencies and mode inertias. The mode inertias of mixed modes, which are sensitive to the stellar interior, are used to constrain stellar models. We define a quantity dνmpd\nu_{\rm m-p} that measures the difference between the mixed modes and the expected pure pressure modes, which is related to the inertia ratio of mixed modes to radial modes. Asteroseismic together with spectroscopic constraints provide the estimations of the stellar parameters: M=1.040.04+0.01MM = 1.04_{-0.04}^{+0.01} M_{\odot}, R=1.660.02+0.01RR = 1.66_{-0.02}^{+0.01} R_{\odot} and t=8.650.06+1.12t=8.65_{-0.06}^{+1.12} Gyr for KIC 6442183, and M=1.000.01+0.01MM = 1.00_{-0.01}^{+0.01} M_{\odot}, R=1.630.01+0.01RR = 1.63_{-0.01}^{+0.01} R_{\odot} and t=10.360.20+0.01t=10.36_{-0.20}^{+0.01} Gyr for KIC 11137075. Either mode inertias or dνmpd\nu_{\rm m-p} could be used to constrain stellar models.Comment: 9 pages, 8 figures, 5 tables A&A accepte

    Fluctuations in Shear-Jammed States: A Statistical Ensemble Approach

    Full text link
    Granular matter exists out of thermal equilibrium, i.e. it is athermal. While conventional equilibrium statistical mechanics is not useful for characterizing granular materials, the idea of constructing a statistical ensemble analogous to its equilibrium counterpart to describe static granular matter was proposed by Edwards and Oakshott more than two decades ago. Recent years have seen several implementations of this idea. One of these is the stress ensemble, which is based on properties of the force moment tensor, and applies to frictional and frictionless grains. We demonstrate the full utility of this statistical framework in shear jammed (SJ) experimental states [1,2], a special class of granular solids created by pure shear, which is a strictly non-equilbrium protocol for creating solids. We demonstrate that the stress ensemble provides an excellent quantitative description of fluctuations in experimental SJ states. We show that the stress fluctuations are controlled by a single tensorial quantity: the angoricity of the system, which is a direct analog of the thermodynamic temperature. SJ states exhibit significant correlations in local stresses and are thus inherently different from density-driven, isotropically jammed (IJ) states.Comment: 6 pages, 4 figure

    Reputation-based network selection solution in heterogeneous wireless network environments

    Get PDF
    The significant developments in terms of both mobile computing device (e.g., smartphones, tablets, laptops, etc.) and the wireless communication technologies (e.g., LTE, LTE-Advanced, WiMAX, etc.), lead towards a converged heterogeneous wireless environment. In this context, the user will be facing the problem of selecting from a number of Radio Access Networks that differ in technology, coverage, pricing scheme, bandwidth, latency, etc. In order to provide high quality of service (QoS) to the user in this heterogeneous wireless environment, a network selection solution is required that will efficiently facilitate the vertical handover between different wireless access networks in a seamless manner. In this paper, we propose a reputation-based network selection solution which aims to select the best value network for the user. We propose a network profiling algorithm that used to compute the reputation of each of the available networks based on the joint collaboration of the users within the network. The network with the best reputation value is recommended for selection and handover

    Reputation-based network selection solution for improved video delivery quality in heterogeneous wireless network environments

    Get PDF
    The continuous innovations and advances in both high-end mobile devices and wireless communication technologies have increased the users demand and expectations for anywhere, anytime, any device high quality multimedia applications provisioning. Moreover, the heterogeneity of the wireless network environment offers the possibility to the mobile user to select between several available radio access network technologies. However, selecting the network that enables the best user perceived video quality is not trivial given that in general the network characteristics vary widely not only in time but also depending on the user location within each network. In this context, this paper proposes a user location-aware reputation-based network selection solution which aims at improving the video delivery in a heterogeneous wireless network environment by selecting the best value network. Network performance is regularly monitored and evaluated by the currently connected users in different areas of each individual network. Based on the existing network performance-related information and mobile user location and speed, the network that offers the best support for video delivery along the user’s path is selected as the target network and the handover is triggered. The simulation results show that the proposed solution improves the video delivery quality in comparison with the case when a classic network selection mechanism was employed

    Field-Trial of Machine Learning-Assisted Quantum Key Distribution (QKD) Networking with SDN

    Full text link
    We demonstrated, for the first time, a machine-learning method to assist the coexistence between quantum and classical communication channels. Software-defined networking was used to successfully enable the key generation and transmission over a city and campus network
    corecore