13 research outputs found

    Subsidence monitoring of offshore platforms

    Get PDF
    AbstractThe normal subsidence monitoring technologies, used in civil engineering, are hard to apply in ocean engineering. Because it is hard to find a fixed reference for subsidence monitoring. A new method, which is suitable for subsidence monitoring of offshore platforms, is proposed in this paper. Firstly, the compression characteristic of the soil was analyzed and the harms of subsidence are discussed. Based on the analysis, the subsidence monitoring method was given. Finally, an real application is shown. Some advanced measurement technologies, such as the FBG strain measurement techniques and so on, were used in this application. The real application indicates that the new method is suitable for the subsidence monitoring of offshore platforms

    BDTS: Blockchain-based Data Trading System

    Full text link
    Trading data through blockchain platforms is hard to achieve \textit{fair exchange}. Reasons come from two folds: Firstly, guaranteeing fairness between sellers and consumers is a challenging task as the deception of any participating parties is risk-free. This leads to the second issue where judging the behavior of data executors (such as cloud service providers) among distrustful parties is impractical in the context of traditional trading protocols. To fill the gaps, in this paper, we present a \underline{b}lockchain-based \underline{d}ata \underline{t}rading \underline{s}ystem, named BDTS. BDTS implements a fair-exchange protocol in which benign behaviors can get rewarded while dishonest behaviors will be punished. Our scheme requires the seller to provide consumers with the correct encryption keys for proper execution and encourage a rational data executor to behave faithfully for maximum benefits from rewards. We analyze the strategies of consumers, sellers, and dealers in the trading game and point out that everyone should be honest about their interests so that the game will reach Nash equilibrium. Evaluations prove efficiency and practicability.Comment: ICICS 2023 (Best Paper Award

    Molecular and biochemical investigations of the anti-fatigue effects of tea polyphenols and fruit extracts of Lycium ruthenicum Murr. on mice with exercise-induced fatigue

    Get PDF
    Background: The molecular mechanisms regulating the therapeutic effects of plant-based ingredients on the exercise-induced fatigue (EIF) remain unclear. The therapeutic effects of both tea polyphenols (TP) and fruit extracts of Lycium ruthenicum (LR) on mouse model of EIF were investigated.Methods: The variations in the fatigue-related biochemical factors, i.e., lactate dehydrogenase (LDH), superoxide dismutase (SOD), tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β), interleukin-2 (IL-2), and interleukin-6 (IL-6), in mouse models of EIF treated with TP and LR were determined. The microRNAs involved in the therapeutic effects of TP and LR on the treatment of mice with EIF were identified using the next-generation sequencing technology.Results: Our results revealed that both TP and LR showed evident anti-inflammatory effect and reduced oxidative stress. In comparison with the control groups, the contents of LDH, TNF-α, IL-6, IL-1β, and IL-2 were significantly decreased and the contents of SOD were significantly increased in the experimental groups treated with either TP or LR. A total of 23 microRNAs (21 upregulated and 2 downregulated) identified for the first time by the high-throughput RNA sequencing were involved in the molecular response to EIF in mice treated with TP and LR. The regulatory functions of these microRNAs in the pathogenesis of EIF in mice were further explored based on Gene Ontology (GO) annotation and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses with a total of over 20,000–30,000 target genes annotated and 44 metabolic pathways enriched in the experimental groups based on GO and KEGG databases, respectively.Conclusion: Our study revealed the therapeutic effects of TP and LR and identified the microRNAs involved in the molecular mechanisms regulating the EIF in mice, providing strong experimental evidence to support further agricultural development of LR as well as the investigations and applications of TP and LR in the treatment of EIF in humans, including the professional athletes

    VIBRATION PERFORMANCE ENGINEERING OPTIMIZATION FOR INTERNAL COMBUSTION FORKLIFT TRUCK STEERING SYSTEM BASED ON UNIFORM DESIGN

    No full text
    The modal analysis of steering system was made because of the excessive vibration of a certain forklift truck when the engine at medium and low speed conditions at first in this paper. The vibration optimum design was put forward to reduce the vibration of steering wheel by the method of Uniform Design. the test results show that the stiffness of improved steering system is increased and the vibration is decreased obviously on the basis of the invariability of costs,especially when the engine at low speed,the acceleration of vibration on direction x,y,z are reduced 83. 8%,90. 3%,83. 7% respectively. The optimum method provides references for the optimum design of body and frame type structures

    Development of Multiple Fano-Resonance-Based All-Dielectric Metastructure for High-Contrast Biomedical Applications

    No full text
    In this paper, an all-dielectric metastructure-based high-contrast refractive index sensor is proposed. This structure can be utilized to detect various concentrations of glycerol-water mixtures by evaluating transmission spectral lines and resonant wavelength shifts related with liquid concentration detection. The experimental and calculated results of the developed sensor structure are able to excite three resonance peaks, demonstrating that the structure is capable of reaching excellent sensing capabilities. It has been established that this work has the potential to be useful in medical and biological detection; this is of great scientific and practical significance

    A Pd/Monolayer Titanate Nanosheet with Surface Synergetic Effects for Precise Synthesis of Cyclohexanones

    No full text
    A catalyst composed of monolayer nonstoichiometric titanate nanosheets (denoted as TN) and Pd clusters is constructed for precise synthesis of cyclohexanone from phenol hydrogenation with high conversion (>99%) and selectivity (>99%) in aqueous media under light irradiation. Experimental and DFT calculation results reveal that the surface exposed acid and basic sites on TN could interact with phenol molecules in a nonplanar fashion via a hexahydroxy hydrogen-bonding ring to form a surface coordination species. This greatly facilitates the adsorption and activation of phenol molecules and suppresses the further hydrogenation of cyclohexanone. Moreover, the surface Pd clusters serve as the active sites for the adsorption and dissociation of hydrogen molecules to provide active H atoms. The synergistic effect of the surface coordination species, TN and Pd clusters remarkably facilitate the high yield of cyclohexanone in photocatalysis. Finally, the possible thermo/photocatalytic mechanisms on Pd/TN are proposed. This work not only highlights the great potential for monolayer nonstoichiometric composition nanosheets in the construction of catalysts for precise organic synthesis but also provides insight into the inherent catalytic behavior at a molecular level

    An OLCI-based algorithm for semi-empirically partitioning absorption coefficient and estimating chlorophyll a concentration in various turbid case-2 waters

    No full text
    Accurate remote assessment of phytoplankton chlorophyll-a (Chla) concentration in turbid case-2 waters is a challenge, owing largely to terrestrial substances (such as minerals and humus) that are optically significant but do not co-vary with phytoplankton. Here, we propose an improved Quasi-Analytical Algorithm (QAA) (denoted as TC2) for retrieving Chla concentrations from remote sensing reflectance (R-rs(lambda)) which can be applied to Sentinel-3 Ocean and Land Colour Instrument (OLCI) images in turbid case-2 waters. TC2 has two main extensions when compared with QAA. First, TC2 makes an additional assumption to separate the total non-water absorption at 665 nm (a(nw)(665)) into phytoplankton absorption (a(ph)(665)) and yellow matter (a(ym)(665)), which is the sum of colored dissolved matter (CDOM) and detritus. Second, for selecting the position of the near-infrared (NIR) band which is used to estimate the signal of total backscattering coefficient (b(b)(lambda(0))) at QAA reference band (lambda(0)), we take into account the assumption that the absorption of pure water should be dominant at this band, as well as the impact of the signal-to-noise ratio (SNR) in the NIR band on the Chla concentration estimating model. When applied to in situ R-rs(lambda) and OLCI match-up R-rs(lambda) data in this study, TC2 provided more accurate Chla estimation than previous Cha concentration retrieval algorithms for turbid case-2 waters. TC2 has the potential for use as a simple and effective algorithm for monitoring Chla concentrations in the turbid case-2 waters at a global scale from space
    corecore