7 research outputs found

    Protective glove use and hygiene habits modify the associations of specific pesticides with Parkinson's disease

    Get PDF
    Pesticides have been associated with Parkinson’s disease (PD), and protective gloves and workplace hygiene can reduce pesticide exposure. We assessed whether use of gloves and workplace hygiene modified associations between pesticides and PD. The Farming and Movement Evaluation (FAME) Study is a nested case-control study within the Agricultural Health Study. Use of protective gloves, other PPE, and hygiene practices were determined by questionnaire (69 cases and 237 controls were included). We considered interactions of gloves and hygiene with ever-use of pesticides for all pesticides with ≥ 5 exposed and unexposed cases and controls in each glove-use stratum (paraquat, permethrin, rotenone, and trifluralin). 61% of respondents consistently used protective gloves and 87% consistently used ≥ 2 hygiene practices. Protective glove use modified the associations of paraquat and permethrin with PD: neither pesticide was associated with PD among protective glove users, while both pesticides were associated with PD among non-users (paraquat OR 3.9 [95% CI 1.3, 11.7], interaction p=0.15; permethrin OR 4.3 [95% CI 1.2, 15.6] interaction p=0.05). Rotenone was associated with PD regardless of glove use. Trifluralin was associated with PD among people who used <2 hygiene practices (OR 5.5 [95% CI 1.1, 27.1]) but was not associated with PD among people who used 2 or more practices (interaction p=0.02). Although sample size was limited in the FAME study, protective glove use and hygiene practices appeared to be important modifiers of the association between pesticides and PD and may reduce risk of PD associated with certain pesticides

    Genetic modification of the association of paraquat and Parkinson's disease

    No full text
    Paraquat is one of the most widely used herbicides worldwide. It produces a Parkinson's disease (PD) model in rodents through redox cycling and oxidative stress (OS) and is associated with PD risk in humans. Glutathione transferases provide cellular protection against OS and could potentially modulate paraquat toxicity. We investigated PD risk associated with paraquat use in individuals with homozygous deletions of the genes encoding glutathione S-transferase M1 (GSTM1) or T1 (GSTT1). Eighty-seven PD subjects and 343 matched controls were recruited from the Agricultural Health Study, a study of licensed pesticide applicators and spouses in Iowa and North Carolina. PD was confirmed by in-person examination. Paraquat use and covariates were determined by interview. We genotyped subjects for homozygous deletions of GSTM1 (GSTM1*0) and GSTT1 (GSTT1*0) and tested interaction between paraquat use and genotype using logistic regression. Two hundred and twenty-three (52%) subjects had GSTM1*0, 95 (22%) had GSTT1*0, and 73 (17%; all men) used paraquat. After adjustment for potential confounders, there was no interaction with GSTM1. In contrast, GSTT1 genotype significantly modified the association between paraquat and PD. In men with functional GSTT1, the odds ratio (OR) for association of PD with paraquat use was 1.5 (95% confidence interval [CI]: 0.6-3.6); in men with GSTT1*0, the OR was 11.1 (95% CI: 3.0-44.6; P interaction: 0.027). Although replication is needed, our results suggest that PD risk from paraquat exposure might be particularly high in individuals lacking GSTT1. GSTT1*0 is common and could potentially identify a large subpopulation at high risk of PD from oxidative stressors such as paraquat

    Dietary fat intake, pesticide use, and Parkinson's disease

    No full text
    BackgroundDietary fat intake may modify Parkinson's disease (PD) risk directly or by altering the response to environmental neurotoxicants including pesticides.MethodsWe conducted a case-control study of PD nested in the Agricultural Health Study (AHS), a cohort of pesticide applicators and spouses. We evaluated diet and pesticide use before diagnosis in 89 PD cases, confirmed by movement disorder specialists, or a corresponding date in 336 frequency-matched controls. Associations were evaluated using multivariate logistic regression to estimate odds ratios (ORs) and 95% confidence intervals (CIs).ResultsIn the AHS, PD was inversely associated with N-3 polyunsaturated fatty acids (PUFAs) (OR 0.4, 95% CI 0.2-0.8 for highest vs. lowest tertile) and the N-3 precursor α-linolenic acid (0.4, 0.2-0.8). In a meta-analysis of nine studies, including the present one, PD was inversely associated with α-linolenic acid (0.81, 0.68-0.96). In the AHS, associations of PD with the pesticides paraquat and rotenone were modified by fat intake. The OR for paraquat was 4.2 (1.5-12) in individuals with PUFA intake below the median but 1.2 (0.4-3.4) in those with higher intake (p-interaction = 0.10). The OR for rotenone was 5.8 (2.3-15) in those with saturated fat intake above the median but 1.5 (0.5-4.2) in those with lower intake (p-interaction = 0.02).ConclusionsPUFA intake was consistently associated with lower PD risk, and dietary fats modified the association of PD risk with pesticide exposure. If confirmed, these findings suggest that a diet high in PUFAs and low in saturated fats might reduce risk of PD

    Peptidoglycan Recognition Protein Genes and Risk of Parkinson\u27s Disease

    No full text
    Increased gut permeability, inflammation, and colonic α-synuclein pathology are present in early Parkinson\u27s disease (PD) and have been proposed to contribute to PD pathogenesis. Peptidoglycan is a structural component of the bacterial cell wall. Peptidoglycan recognition proteins (PGRPs) maintain healthy gut microbial flora by regulating the immune response to both commensal and harmful bacteria. We tested the hypothesis that variants in genes that encode PGRPs are associated with PD risk. Participants in two independent case-control studies were genotyped for 30 single-nucleotide polymorphisms (SNPs) in the four PGLYRP genes. Using logistic regression to estimate odds ratios (OR) and 95% confidence intervals (CI) adjusted for potential confounding variables, we conducted analyses in each study, separately and pooled. One SNP failed the assay, and three had little to no variation. The ORs were similar in both study populations. In pooled analyses, three of seven PGLYRP2 SNPs (rs3813135, rs733731, rs892145), one of five PGLYRP3 SNPs (rs2987763), and six of nine PGLYRP4 SNPs (rs10888557, rs12063091, rs3006440, rs3006448, rs3006458, and rs3014864) were significantly associated with PD risk. Association was strongest for PGLYRP4 5\u27untranslated region (UTR) SNP rs10888557 (GG reference, CG OR 0.6 [95%CI 0.4-0.9], CC OR 0.15 [95%CI 0.04-0.6]; log-additive P-trend, 0.0004). Common variants in PGLYRP genes are associated with PD risk in two independent studies. These results require replication, but they are consistent with hypotheses of a causative role for the gut microbiota and gastrointestinal immune response in PD. © 2014 International Parkinson and Movement Disorder Societ

    Peptidoglycan Recognition Protein Genes and Risk of Parkinson\u27s Disease

    No full text
    Increased gut permeability, inflammation, and colonic α-synuclein pathology are present in early Parkinson\u27s disease (PD) and have been proposed to contribute to PD pathogenesis. Peptidoglycan is a structural component of the bacterial cell wall. Peptidoglycan recognition proteins (PGRPs) maintain healthy gut microbial flora by regulating the immune response to both commensal and harmful bacteria. We tested the hypothesis that variants in genes that encode PGRPs are associated with PD risk. Participants in two independent case-control studies were genotyped for 30 single-nucleotide polymorphisms (SNPs) in the four PGLYRP genes. Using logistic regression to estimate odds ratios (OR) and 95% confidence intervals (CI) adjusted for potential confounding variables, we conducted analyses in each study, separately and pooled. One SNP failed the assay, and three had little to no variation. The ORs were similar in both study populations. In pooled analyses, three of seven PGLYRP2 SNPs (rs3813135, rs733731, rs892145), one of five PGLYRP3 SNPs (rs2987763), and six of nine PGLYRP4 SNPs (rs10888557, rs12063091, rs3006440, rs3006448, rs3006458, and rs3014864) were significantly associated with PD risk. Association was strongest for PGLYRP4 5\u27untranslated region (UTR) SNP rs10888557 (GG reference, CG OR 0.6 [95%CI 0.4-0.9], CC OR 0.15 [95%CI 0.04-0.6]; log-additive P-trend, 0.0004). Common variants in PGLYRP genes are associated with PD risk in two independent studies. These results require replication, but they are consistent with hypotheses of a causative role for the gut microbiota and gastrointestinal immune response in PD. © 2014 International Parkinson and Movement Disorder Societ

    Dietary fat intake, pesticide use, and Parkinson's disease

    No full text
    BACKGROUND: Dietary fat intake may modify Parkinson’s disease (PD) risk directly or by altering the response to environmental neurotoxicants including pesticides. METHODS: We conducted a case-control study of PD nested in the Agricultural Health Study (AHS), a cohort of pesticide applicators and spouses. We evaluated diet and pesticide use before diagnosis in 89 PD cases, confirmed by movement disorder specialists, or a corresponding date in 336 frequency-matched controls. Associations were evaluated using multivariate logistic regression to estimate odds ratios (ORs) and 95% confidence intervals (CIs). RESULTS: In the AHS, PD was inversely associated with N-3 polyunsaturated fatty acids (PUFAs) (OR 0.4,95% CI 0.2-0.8 for highest vs lowest tertile) and the N-3 precursor α-linolenic acid (0.4, 0.2-0.8). In a meta-analysis of nine studies, including the present one, PD was inversely associated with α-linolenic acid (0.81, 0.68-0.96). In the AHS, associations of PD with the pesticides paraquat and rotenone were modified by fat intake. The OR for paraquat was 4.2 (1.5-12) in individuals with PUFA intake below the median but 1.2 (0.4-3.4) in those with higher intake (p-interaction=0.10). The OR for rotenone was 5.8 (2.3-15) in those with saturated fat intake above the median but 1.5 (0.5-4.2) in those with lower intake p-interaction=0.02). CONCLUSIONS: PUFA intake was consistently associated with lower PD risk, and dietary fats modified the association of PD risk with pesticide exposure. If confirmed, these findings suggest that a diet high in PUFAs and low in saturated fats might reduce risk of PD
    corecore