48 research outputs found

    Bias vs structure of polynomials in large fields, and applications in effective algebraic geometry and coding theory

    Full text link
    Let ff be a polynomial of degree dd in nn variables over a finite field F\mathbb{F}. The polynomial is said to be unbiased if the distribution of f(x)f(x) for a uniform input xFnx \in \mathbb{F}^n is close to the uniform distribution over F\mathbb{F}, and is called biased otherwise. The polynomial is said to have low rank if it can be expressed as a composition of a few lower degree polynomials. Green and Tao [Contrib. Discrete Math 2009] and Kaufman and Lovett [FOCS 2008] showed that bias implies low rank for fixed degree polynomials over fixed prime fields. This lies at the heart of many tools in higher order Fourier analysis. In this work, we extend this result to all prime fields (of size possibly growing with nn). We also provide a generalization to nonprime fields in the large characteristic case. However, we state all our applications in the prime field setting for the sake of simplicity of presentation. As an immediate application, we obtain improved bounds for a suite of problems in effective algebraic geometry, including Hilbert nullstellensatz, radical membership and counting rational points in low degree varieties. Using the above generalization to large fields as a starting point, we are also able to settle the list decoding radius of fixed degree Reed-Muller codes over growing fields. The case of fixed size fields was solved by Bhowmick and Lovett [STOC 2015], which resolved a conjecture of Gopalan-Klivans-Zuckerman [STOC 2008]. Here, we show that the list decoding radius is equal the minimum distance of the code for all fixed degrees, even when the field size is possibly growing with nn

    List decoding Reed-Muller codes over small fields

    Full text link
    The list decoding problem for a code asks for the maximal radius up to which any ball of that radius contains only a constant number of codewords. The list decoding radius is not well understood even for well studied codes, like Reed-Solomon or Reed-Muller codes. Fix a finite field F\mathbb{F}. The Reed-Muller code RMF(n,d)\mathrm{RM}_{\mathbb{F}}(n,d) is defined by nn-variate degree-dd polynomials over F\mathbb{F}. In this work, we study the list decoding radius of Reed-Muller codes over a constant prime field F=Fp\mathbb{F}=\mathbb{F}_p, constant degree dd and large nn. We show that the list decoding radius is equal to the minimal distance of the code. That is, if we denote by δ(d)\delta(d) the normalized minimal distance of RMF(n,d)\mathrm{RM}_{\mathbb{F}}(n,d), then the number of codewords in any ball of radius δ(d)ε\delta(d)-\varepsilon is bounded by c=c(p,d,ε)c=c(p,d,\varepsilon) independent of nn. This resolves a conjecture of Gopalan-Klivans-Zuckerman [STOC 2008], who among other results proved it in the special case of F=F2\mathbb{F}=\mathbb{F}_2; and extends the work of Gopalan [FOCS 2010] who proved the conjecture in the case of d=2d=2. We also analyse the number of codewords in balls of radius exceeding the minimal distance of the code. For ede \leq d, we show that the number of codewords of RMF(n,d)\mathrm{RM}_{\mathbb{F}}(n,d) in a ball of radius δ(e)ε\delta(e) - \varepsilon is bounded by exp(cnde)\exp(c \cdot n^{d-e}), where c=c(p,d,ε)c=c(p,d,\varepsilon) is independent of nn. The dependence on nn is tight. This extends the work of Kaufman-Lovett-Porat [IEEE Inf. Theory 2012] who proved similar bounds over F2\mathbb{F}_2. The proof relies on several new ingredients: an extension of the Frieze-Kannan weak regularity to general function spaces, higher-order Fourier analysis, and an extension of the Schwartz-Zippel lemma to compositions of polynomials.Comment: fixed a bug in the proof of claim 5.6 (now lemma 5.5

    Nonclassical Polynomials as a Barrier to Polynomial Lower Bounds

    Get PDF
    The problem of constructing explicit functions which cannot be approximated by low degree polynomials has been extensively studied in computational complexity, motivated by applications in circuit lower bounds, pseudo-randomness, constructions of Ramsey graphs and locally decodable codes. Still, most of the known lower bounds become trivial for polynomials of super-logarithmic degree. Here, we suggest a new barrier explaining this phenomenon. We show that many of the existing lower bound proof techniques extend to nonclassical polynomials, an extension of classical polynomials which arose in higher order Fourier analysis. Moreover, these techniques are tight for nonclassical polynomials of logarithmic degree

    Bounds on the leakage of the input's distribution in information-hiding protocols

    Get PDF
    International audienceIn information-hiding, an adversary that tries to infer the secret information has a higher probability of success if it knows the distribution on the secrets. We show that if the system leaks probabilistically some information about the secrets, (that is, if there is a probabilistic correlation between the secrets and some observables) then the adversary can approximate such distribution by repeating the observations. More precisely, it can approximate the distribution on the observables by computing their frequencies, and then derive the distribution on the secrets by using the correlation in the inverse direction. We illustrate this method, and then we study the bounds on the approximation error associated with it, for various natural notions of error. As a case study, we apply our results to Crowds, a protocol for anonymous communication
    corecore