75 research outputs found
Solid-phase molecular recognition of cytosine based on proton-transfer reaction. Part II. supramolecular architecture in the cocrystals of cytosine and its 5-Fluoroderivative with 5-Nitrouracil
<p>Abstract</p> <p>Background</p> <p>Cytosine is a biologically important compound owing to its natural occurrence as a component of nucleic acids. Cytosine plays a crucial role in DNA/RNA base pairing, through several hydrogen-bonding patterns, and controls the essential features of life as it is involved in genetic codon of 17 amino acids. The molecular recognition among cytosines, and the molecular heterosynthons of molecular salts fabricated through proton-transfer reactions, might be used to investigate the theoretical sites of cytosine-specific DNA-binding proteins and the design for molecular imprint.</p> <p>Results</p> <p>Reaction of cytosine (Cyt) and 5-fluorocytosine (5Fcyt) with 5-nitrouracil (Nit) in aqueous solution yielded two new products, which have been characterized by single-crystal X-ray diffraction. The products include a dihydrated molecular salt (CytNit) having both ionic and neutral hydrogen-bonded species, and a dihydrated cocrystal of neutral species (5FcytNit). In CytNit a protonated and an unprotonated cytosine form a triply hydrogen-bonded aggregate in a self-recognition ion-pair complex, and this dimer is then hydrogen bonded to one neutral and one anionic 5-nitrouracil molecule. In 5FcytNit the two neutral nucleobase derivatives are hydrogen bonded in pairs. In both structures conventional N-H<sup>...</sup>O, O-H<sup>...</sup>O, N-H<sup>+...</sup>N and N-H<sup>...</sup>N<sup>- </sup>intermolecular interactions are most significant in the structural assembly.</p> <p>Conclusion</p> <p>The supramolecular structure of the molecular adducts formed by cytosine and 5-fluorocytosine with 5-nitrouracil, CytNit and 5FcytNit, respectively, have been investigated in detail. CytNit and 5FcytNit exhibit widely differing hydrogen-bonding patterns, though both possess layered structures. The crystal structures of CytNit (D<it>p</it>k<sub>a </sub>= -0.7, molecular salt) and 5FcytNit (D<it>p</it>k<sub>a </sub>= -2.0, cocrystal) confirm that, at the present level of knowledge about the nature of proton-transfer process, there is not a strict correlation between the D<it>p</it>k<sub>a </sub>values and the proton transfer, in that the acid/base <it>p</it>k<sub>a </sub>strength is not a definite guide to predict the location of H atoms in the solid state. Eventually, the absence in 5FcytNit of hydrogen bonds involving fluorine is in agreement with findings that covalently bound fluorine hardly ever acts as acceptor for available BrĂžnsted acidic sites in the presence of competing heteroatom acceptors.</p
A robust binary supramolecular organic framework (SOF) with high CO2 adsorption and selectivity
A robust binary hydrogen-bonded supramolecular organic framework (SOF-7) has been synthesized by solvothermal reaction of 1,4-bis-(4-(3,5-dicyano-2,6 dipyridyl)dihydropyridyl)benzene (1) and 5,5â-bis-(azanediyl)-oxalyl-diisophthalic acid (2). Single crystal X-ray diffraction analysis shows that SOF-7 comprises 2 and 1,4-bis-(4-(3,5-dicyano-2,6-dipyridyl)pyridyl)benzene (3), the latter formed in situ from the oxidative dehydrogenation of 1. SOF-7 shows a three-dimensional four-fold interpenetrat-ed structure with complementary OâH···N hydrogen bonds to form channels that are decorated with cyano- and amide-groups. SOF-7 exhibits excellent thermal stability and sol-vent and moisture durability, as well as permanent porosity. The activated desolvated material SOF-7a shows high CO2 sorption capacity and selectivity compared with other po-rous organic materials assembled solely through hydrogen bonding
Tuning proton behavior in a ternary molecular complex.
noThe multicomponent ternary complex of 4-dimethylaminobenzoic acid (4-DABA), 3,5-dinitrobenzoic acid
(3,5-DNBA), and 4,40-bipyridine (BIPY) has been studied by variable temperature X-ray and neutron diffraction. Proton disorder is
observed within the 4-DABA homodimers present and quantitatively evaluated from neutron data. The effect of the crystal
environment and in particular the pyramidalization of the nitrogen atom within the 4-DABA molecule and the consequential
effect on the presence of hydrogen atom disorder are discussed with reference to the previously determined pure 4-DABA
structure and the binary cocrystal with 3,5-DNBA
[[alternative]]Self-assembly Molecular Complex by 3,6-Di(pyridin-4-yl)- 1,2,4,5-tetrazine with Trimesic Acid through H-Bonding
[[notice]]èŁæŁćźçą[[incitationindex]]SC
- âŠ