310 research outputs found
The emerging potential of magnetic resonance imaging in personalizing radiotherapy for head and neck cancer: an oncologist's perspective.
Head and neck cancer (HNC) is a challenging tumour site for radiotherapy delivery owing to its complex anatomy and proximity to organs at risk (OARs) such as the spinal cord and optic apparatus. Despite significant advances in radiotherapy planning techniques, radiation-induced morbidities remain substantial. Further improvement would require high-quality imaging and tailored radiotherapy based on intratreatment response. For these reasons, the use of MRI in radiotherapy planning for HNC is rapidly gaining popularity. MRI provides superior soft-tissue contrast in comparison with CT, allowing better definition of the tumour and OARs. The lack of additional radiation exposure is another attractive feature for intratreatment monitoring. In addition, advanced MRI techniques such as diffusion-weighted, dynamic contrast-enhanced and intrinsic susceptibility-weighted MRI techniques are capable of characterizing tumour biology further by providing quantitative functional parameters such as tissue cellularity, vascular permeability/perfusion and hypoxia. These functional parameters are known to have radiobiological relevance, which potentially could guide treatment adaptation based on their changes prior to or during radiotherapy. In this article, we first present an overview of the applications of anatomical MRI sequences in head and neck radiotherapy, followed by the potentials and limitations of functional MRI sequences in personalizing therapy
Evaluation of radiotherapy techniques for radical treatment of lateralised oropharyngeal cancers : Dosimetry and NTCP.
Aim The aim of this study was to investigate potential advantages and disadvantages of three-dimensional conformal radiotherapy (3DCRT), multiple fixed-field intensity-modulated radiotherapy (IMRT) and volumetric-modulated arc therapy (VMAT) in terms of dose to the planning target volume (PTV), organs at risk (OARs) and normal tissue complication probability (NTCP) for delivering ipsilateral radiotherapy.Materials and methods 3DCRT, IMRT and VMAT were compared in patients with well-lateralised primary tonsillar cancers who underwent primary radical ipsilateral radiotherapy. The following parameters were compared: conformity index (CI); homogeneity index (HI); dose-volume histograms (DVHs) of PTVs and OARs; NTCP, risk of radiation-induced cancer and dose accumulation during treatment.Results IMRT and VMAT were superior to 3DCRT in terms of CI, HI and dose to the target volumes, as well as mandible and dose accumulation robustness. The techniques were equivalent in terms of dose and NTCP for the contralateral oral cavity, contralateral submandibular gland and mandible, when specific dose constraint objectives were used on the oral cavity volume. Although the volume of normal tissue exposed to low-dose radiation was significantly higher with IMRT and VMAT, the risk of radiation-induced secondary malignancy was dependant on the mathematical model used.Conclusion This study demonstrates the superiority of IMRT/VMAT techniques over 3DCRT in terms of dose homogeneity, conformity and consistent dose delivery to the PTV throughout the course of treatment in patients with lateralised oropharyngeal cancers. Dosimetry and NTCP calculations show that these techniques are equivalent to 3DCRT with regard to the risk of acute mucositis when specific dose constraint objectives were used on the contralateral oral cavity OAR
Recent advances in radiotherapy
Radiation therapy has come a long way from treatment planning based on orthogonal radiographs with large margins around tumours. Advances in imaging and radiation planning software have led to three-dimensional conformal radiotherapy and, further, to intensity modulated radiotherapy (IMRT). IMRT permits sparing of normal tissues and hence dose-escalation to tumours. IMRT is the current standard in treatment of head and prostate cancer and is being investigated in other tumour sites. Exquisitely sculpted dose distributions (increased geographical miss) with IMRT, plus tumour motion and anatomical changes during radiotherapy make image guided radiotherapy an essential part of modern radiation delivery. Various hardware and software tools are under investigation for optimal IGRT
Recovery of Salivary Function: Contralateral Parotid-sparing Intensity-modulated Radiotherapy versus Bilateral Superficial Lobe Parotid-sparing Intensity-modulated Radiotherapy.
Aims To establish whether there is a difference in recovery of salivary function with bilateral superficial lobe parotid-sparing intensity-modulated radiotherapy (BSLPS-IMRT) versus contralateral parotid-sparing IMRT (CLPS-IMRT) in patients with locally advanced head and neck squamous cell cancers.Materials and methods A dosimetric analysis was carried out on data from two studies in which patients received BSLPS-IMRT (PARSPORT II) or CLPS-IMRT (PARSPORT). Acute (National Cancer Institute, Common Terminology Criteria for adverse events - NCI CTCAEv3.0) and late (Late Effects of Normal Tissue- subjective, objective, management analytical - LENTSOMA and Radiation Therapy Oncology Group) xerostomia scores were dichotomised: recovery (grade 0-1) versus no recovery (≥grade 2). Incidence of recovery of salivary function was compared between the two techniques and dose-response relationships were determined by fitting dose-response curves to the data using non-linear logistic regression analysis.Results Seventy-one patients received BSLPS-IMRT and 35 received CLPS-IMRT. Patients received 65 Gy in 30 fractions to the primary site and involved nodal levels and 54 Gy in 30 fractions to elective nodal levels. There were significant differences in mean doses to contralateral parotid gland (29.4 Gy versus 24.9 Gy, P < 0.005) and superficial lobes (26.8 Gy versus 30.5 Gy, P = 0.02) for BSLPS and CLPS-IMRT, respectively. Lower risk of long-term ≥grade 2 subjective xerostomia (LENTSOMA) was reported with BSLPS-IMRT (odds ratio 0.50; 95% confidence interval 0.29-0.86; P = 0.012). The percentage of patients who reported recovery of parotid saliva flow at 1 year was higher with BSLPS-IMRT compared with CLPS-IMRT techniques (67.1% versus 52.8%), but the difference was not statistically significant (P = 0.12). For the whole parotid gland, the tolerance doses, D50, were 25.6 Gy (95% confidence interval 20.6-30.5), k = 2.7 (0.9-4.5) (CLPS-IMRT) and 28.9 Gy (26.1-31.9), k = 2.4 (1.4-3.4) (BSLPS-IMRT). For the superficial lobe, D50 were similar: BSLPS-IMRT 23.5 Gy (19.3-27.6), k = 1.9 (0.5-3.8); CLPS-IMRT 24.0 Gy (17.7-30.1), k = 2.1 (0.1-4.1).Conclusion BSLPS-IMRT reduces the risk of developing high-grade subjective xerostomia compared with CLPS-IMRT. The D50 of the superficial lobe may be a more reliable predictor of recovery of parotid function than the whole gland mean dose
Intensity modulated radiotherapy in locally advanced thyroid cancer: Outcomes of a sequential phase I dose-escalation study.
BACKGROUND AND PURPOSE:To determine the safety and tolerability of dose-escalation using modestly accelerated IMRT in high-risk locally advanced thyroid cancer requiring post-operative radiotherapy, and to report preliminary data on efficacy. MATERIALS AND METHODS:A sequential Phase I dose-escalation design was used. Dose level one (DL1) received 58.8 Gy/28F to the post-operative bed and 50 Gy/28F to elective nodes. DL2 received 66.6 Gy/30F to the thyroid bed, 60 Gy/30F to post-operative nodal levels and 54 Gy/30F to elective nodal levels. Acute (NCICTCv.2.0) and late toxicities (RTOG and modified LENTSOM) were recorded. The primary endpoint was the number of patients with ≥Grade 3 (G3) toxicity at 12 months post-treatment. RESULTS:Fifteen patients were recruited to DL1 and twenty-nine to DL2. At 12 months ≥G3 toxicities were 8.3% in both DL1 and DL2. At 60 months, ≥G3 toxicity was reported in 3 (33%) patients in DL1 and 1 (7%) in DL2. One patient in DL2 died at 24 months from radiation-induced toxicity. Time to relapse and overall survival rates were higher in DL2, but this was not statistically significant. Dose-escalation using this accelerated regimen can be safely performed with a toxicity profile similar to reported series using conventional doses
Induction Chemotherapy Followed by Chemo-intensity-modulated Radiotherapy for Locally Advanced Nasopharyngeal Cancer.
Aims To determine the toxicity and tumour control rates after chemo-intensity-modulated radiotherapy (chemo-IMRT) for locally advanced nasopharyngeal cancers (LA-NPC).Materials and methods Patients with LA-NPC were enrolled in a trial to receive induction chemotherapy followed by parotid-sparing chemo-IMRT. The primary site and involved nodal levels received 65 Gy in 30 fractions and at risk nodal levels received 54 Gy in 30 fractions. Incidence of ≥grade 2 subjective xerostomia was the primary end point. Secondary end points included incidences of acute and late toxicities and survival outcomes.Results Forty-two patients with American Joint Committee on Cancer stages II (12%), III (26%) and IV (62%) (World Health Organization subtype: I [5%]; II [40%]; III [55%]) completed treatment between January 2006 and April 2010 with a median follow-up of 32 months. Incidences of ≥grade 2 acute toxicities were: dysphagia 83%; xerostomia 76%; mucositis 97%; pain 76%; fatigue 99% and ototoxicity 12%. At 12 months, ≥grade 2 subjective xerostomia was observed in 31%, ototoxicitiy in 13% and dysphagia in 4%. Two year locoregional control was 86.2% (95% confidence interval: 70.0-94.0) with 2 year progression-free survival at 78.4% (61.4-88.6) and 2 year overall survival at 85.9% (69.3-93.9).Conclusions Chemo-IMRT for LA-NPC is feasible with good survival outcomes. At 1 year, 31% experience ≥grade 2 subjective xerostomia
- …