10 research outputs found

    Transcription of T7 DNA immobilised on latex beads and Langmuir-Blodgett film

    No full text
    The recognition of DNA is the first and most important condition for biological applications, including transcription and translation regulators and DNA sensors. For this purpose, we have developed few systems where we were able to immobilize long double-stranded DNA (dsDNA) successfully to the surfaces of different solid substrates. To achieve this, we have chosen polystyrene beads and standard Langmuir-Blodgett monolayer of Zn-arachidate. In the first attempt, variant of T7 DNA containing one strong promoter A1 for Escherichia coli RNA polymerase was immobilised on uniform polystyrene microspheres (0.31 microm diameter) by covalent grafting. In the latter case, Zn(II) is bound to arachidic acid through charge neutralization. Since tetrahedral Zn(II) participates in DNA recognition through coordination, we have been able to layer DNA over the Zn-arachidate monolayer. The successful immobilization of DNAs on these different substrates was visualized under fluorescence microscope. These immobilized DNAs were used as a template to study in vitro transcription reaction and thus we introduce a new strategy for the study of transcription in heterogeneous phase

    Transcription of T7 DNA immobilised on latex beads and Langmuir-Blodgett film

    No full text
    The recognition of DNA is the first and most important condition for biological applications, including transcription and translation regulators and DNA sensors. For this purpose, we have developed few systems where we were able to immobilize long double-stranded DNA (dsDNA) successfully to the surfaces of different solid substrates. To achieve this, we have chosen polystyrene beads and standard Langmuir-Blodgett monolayer of Zn-arachidate. In the first attempt, variant of T7 DNA containing one strong promoter A1 for Escherichia coli RNA polymerase was immobilised on uniform polystyrene microspheres (0.31 μm diameter) by covalent grafting. In the latter case, Zn(II) is bound to arachidic acid through charge neutralization. Since tetrahedral Zn(II) participates in DNA recognition through coordination, we have been able to layer DNA over the Zn-arachidate monolayer. The successful immobilization of DNAs on these different substrates was visualized under fluorescence microscope. These immobilized DNAs were used as a template to study in vitro transcription reaction and thus we introduce a new strategy for the study of transcription in heterogeneous phase

    Formation of a DNA layer on Langmuir-Blodgett films and its enzymatic digestion

    No full text
    Here, we report a system we have developed where long double-stranded DNAs (dsDNAs) are immobilized on a monolayer of Zn-arachidate. We have applied the Langmuir-Blodgett technique to form the monolayer of Zn-arachidate where Zn(II) is bound to arachidic acid through charge neutralization. Because tetrahedral Zn(II) participates in DNA recognition through coordination, we have been able to layer DNA over the Zn-arachidate monolayer. The DNA layer shows a typical compression and expansion cycle in a concentration-dependent fashion. Interestingly, the DNA monolayer is available for enzymatic degradation by DNaseI. The detection of DNA and its accessibility towards biological reaction is demonstrated by imaging through fluorescence microscopy. The conformation of the DNA, immobilized on the monolayer, was studied with the help of atomic force microscopy (AFM). We observed that the dsDNAs were aligned in a stretched manner on the surface. To investigate further, we also demonstrate here that the small single-stranded DNA (ssDNA) immobilized on the air-water interface can act as a target molecule for the complementary ssDNA present in the subphase. The study of DNA hybridization done with the help of fluorescence spectroscopy clearly supports the AFM characterization

    High-resolution solid-state NMR structure of a 17.6 kDa protein

    No full text
    The use of pseudocontact shifts arising from paramagnetic metal ions in a microcrystalline protein sample is proposed as a strategy to obtain unambiguous signal assignments in solid-state NMR spectra enabling distance extraction for protein structure calculation. With this strategy, 777 unambiguous (281 sequential, 217 medium-range, and 279 long-range) distance restraints could be obtained from PDSD, DARR, CHHC, and the recently introduced PAR and PAIN-CP solid-state experiments for the cobalt(II)substituted catalytic domain of matrix metalloproteinase 12 (159 amino acids, 17.6 kDa). The obtained structure is a high resolution one, with backbone rmsd of 1.0 +/- 0.2 angstrom, and is in good agreement with the X-ray structure (rmsd to X-ray 1.3 angstrom). The proposed strategy, which may be generalized for nonmetalloproteins with the use of paramagnetic tags, represents a significant step ahead in protein structure determination using solid-state NMR

    Automatic methyl assignment in large proteins by the MAGIC algorithm

    No full text
    International audienceSelective methyl labeling is an extremely powerful approach to study the structure, dynamics and function of biomolecules by NMR. Despite spectacular progress in the field, such studies remain rather limited in number. One of the main obstacles remains the assignment of the methyl resonances, which is labor intensive and error prone. Typically, NOESY crosspeak patterns are manually correlated to the available crystal structure or an in silico template model of the protein. Here, we propose methyl assignment by graphing inference construct, an exhaustive search algorithm with no peak network definition requirement. In order to overcome the combinatorial problem, the exhaustive search is performed locally, i.e. for a small number of methyls connected through-space according to experimental 3D methyl NOESY data. The local network approach drastically reduces the search space. Only the best local assignments are combined to provide the final output. Assignments that match the data with comparable scores are made available to the user for cross-validation by additional experiments such as methyl-amide NOEs. Several NMR datasets for proteins in the 25-50 kDa range were used during development and for performance evaluation against the manually assigned data. We show that the algorithm is robust, reliable and greatly speeds up the methyl assignment task

    Structural and mechanistic insights into the inhibition of respiratory syncytial virus polymerase by a non-nucleoside inhibitor

    No full text
    The respiratory syncytial virus polymerase complex, consisting of the polymerase (L) and phosphoprotein (P), catalyzes nucleotide polymerization, cap addition, and cap methylation via the RNA dependent RNA polymerase, capping, and Methyltransferase domains on L. Several nucleoside and non-nucleoside inhibitors have been reported to inhibit this polymerase complex, but the structural details of the exact inhibitor-polymerase interactions have been lacking. Here, we report a non-nucleoside inhibitor JNJ-8003 with sub-nanomolar inhibition potency in both antiviral and polymerase assays. Our 2.9 Å resolution cryo-EM structure revealed that JNJ-8003 binds to an induced-fit pocket on the capping domain, with multiple interactions consistent with its tight binding and resistance mutation profile. The minigenome and gel-based de novo RNA synthesis and primer extension assays demonstrated that JNJ-8003 inhibited nucleotide polymerization at the early stages of RNA transcription and replication. Our results support that JNJ-8003 binding modulates a functional interplay between the capping and RdRp domains, and this molecular insight could accelerate the design of broad-spectrum antiviral drugs

    Structural and mechanistic insights into the inhibition of respiratory syncytial virus polymerase by a non-nucleoside inhibitor

    No full text
    Abstract: The respiratory syncytial virus polymerase complex, consisting of the polymerase (L) and phosphoprotein (P), catalyzes nucleotide polymerization, cap addition, and cap methylation via the RNA dependent RNA polymerase, capping, and Methyltransferase domains on L. Several nucleoside and non-nucleoside inhibitors have been reported to inhibit this polymerase complex, but the structural details of the exact inhibitor-polymerase interactions have been lacking. Here, we report a non-nucleoside inhibitor JNJ-8003 with sub-nanomolar inhibition potency in both antiviral and polymerase assays. Our 2.9 angstrom resolution cryo-EM structure revealed that JNJ-8003 binds to an induced-fit pocket on the capping domain, with multiple interactions consistent with its tight binding and resistance mutation profile. The minigenome and gel-based de novo RNA synthesis and primer extension assays demonstrated that JNJ-8003 inhibited nucleotide polymerization at the early stages of RNA transcription and replication. Our results support that JNJ-8003 binding modulates a functional interplay between the capping and RdRp domains, and this molecular insight could accelerate the design of broad-spectrum antiviral drugs
    corecore