765 research outputs found
Stability of small amplitude normal modes of a Bose-Einstein condensate with a singly quantized vortex confined in an optical lattice
We study the dynamics of a BEC with a singly quantized vortex, placed in the
combined potential of a 1-D (2-D) optical lattice and an axi-symmetric harmonic
trap. A time-dependent variational Lagrangian analysis shows that an optical
lattice helps to stabilize the vortex which in absence of the optical lattice
is unstable. We find that the normal modes are stable only if the depth of the
optical potential is more than a certain critical value. This critical value of
the optical potential depends on the interaction parameter.In general higher
the interaction parameter,lower the value of the optical potential required to
stabilize the vortex. The BEC with the singly quantized vortex is found to be
relatively more unstable in a 2-D optical lattice compared to a 1-D optical
lattice.Comment: Revised version with 11 pages including 1 figur
Deciphering Universal Extra Dimension from the top quark signals at the CERN LHC
Models based on Universal Extra Dimensions predict Kaluza-Klein (KK)
excitations of all Standard Model (SM) particles. We examine the pair
production of KK excitations of top- and bottom-quarks at the Large Hadron
Collider. Once produced, the KK top/bottom quarks can decay to -quarks,
leptons and the lightest KK-particle, , resulting in 2 -jets, two
opposite sign leptons and missing transverse momentum, thereby mimicing
top-pair production. We show that, with a proper choice of kinematic cuts, an
integrated luminosity of 100 fb would allow a discovery for an inverse
radius upto GeV.Comment: 18 pages, 14 figures, Accepted for publication in JHE
cISP: A Speed-of-Light Internet Service Provider
Low latency is a requirement for a variety of interactive network
applications. The Internet, however, is not optimized for latency. We thus
explore the design of cost-effective wide-area networks that move data over
paths very close to great-circle paths, at speeds very close to the speed of
light in vacuum. Our cISP design augments the Internet's fiber with free-space
wireless connectivity. cISP addresses the fundamental challenge of
simultaneously providing low latency and scalable bandwidth, while accounting
for numerous practical factors ranging from transmission tower availability to
packet queuing. We show that instantiations of cISP across the contiguous
United States and Europe would achieve mean latencies within 5% of that
achievable using great-circle paths at the speed of light, over medium and long
distances. Further, we estimate that the economic value from such networks
would substantially exceed their expense
Mapping the multi-step mechanism of a photoredox catalyzed atom-transfer radical polymerization reaction by direct observation of the reactive intermediates
The rapid development of new applications of photoredox catalysis has so far outpaced the mechanistic studies important for rational design of new classes of catalysts. Here, we report the use of ultrafast transient absorption spectroscopic methods to reveal both mechanistic and kinetic details of multiple sequential steps involved in an organocatalyzed atom transfer radical polymerization reaction. The polymerization system studied involves a N,N-diaryl dihydrophenazine photocatalyst, a radical initiator (methyl 2-bromopropionate) and a monomer (isoprene). Time-resolved spectroscopic measurements spanning sub-picosecond to microseconds (i.e., almost 8 orders of magnitude of time) track the formation and loss of key reactive intermediates. These measurements identify both the excited state of the photocatalyst responsible for electron transfer and the radical intermediates participating in propagation reactions, as well as quantifying their lifetimes. The outcomes connect the properties of N,N-diaryl dihydrophenazine organic photocatalysts with the rates of sequential steps in the catalytic cycle
Search for Higgs bosons of the Universal Extra Dimensions at the Large Hadron Collider
The Higgs sector of the Universal Extra Dimensions (UED) has a rather
involved setup. With one extra space dimension, the main ingredients to the
construct are the higher Kaluza-Klein (KK) excitations of the Standard Model
Higgs boson and the fifth components of the gauge fields which on
compactification appear as scalar degrees of freedom and can mix with the
former thus leading to physical KK-Higgs states of the scenario. In this work,
we explore in detail the phenomenology of such a Higgs sector of the UED with
the Large Hadron Collider (LHC) in focus. We work out relevant decay branching
fractions involving the KK-Higgs excitations. Possible production modes of the
KK-Higgs bosons are then discussed with an emphasis on their associated
production with the third generation KK-quarks and that under the cascade
decays of strongly interacting UED excitations which turn out to be the only
phenomenologically significant modes. It is pointed out that the collider
searches of such Higgs bosons face generic hardship due to soft end-products
which result from severe degeneracies in the masses of the involved excitations
in the minimal version of the UED (MUED). Generic implications of either
observing some or all of the KK-Higgs bosons at the LHC are discussed.Comment: 25 pages, 9 figures and 1 tabl
Search for the minimal universal extra dimension model at the LHC with =7 TeV
Universal Extra Dimension (UED) model is one of the popular extension of the
Standard Model (SM) which offers interesting phenomenology. In the minimal UED
(mUED) model, Kaluza-Klein (KK) parity conservation ensures that KK
states can only be pair produced at colliders and the lightest KK particle is
stable. In most of the parameter space, first KK excitation of SM hypercharge
gauge boson is the lightest one and it can be a viable dark matter candidate.
Thus, the decay of KK particles will always involve missing transverse
energy as well as leptons and jets. The production cross sections of KK
particles are large and such particles may be observed at the Large Hadron
Collider (LHC). We explore the mUED discovery potential of the LHC with
= 7 TeV in the multileptonic final states. Since in the early LHC
run, precise determination of missing transverse energy may not be possible, we
examine the LHC reach with and without using missing transverse energy
information. We observe that missing transverse energy cut will not improve
mUED discovery reach significantly. We have found that opposite sign di-lepton
channel is the most promising discovery mode and with first of
collected luminosity, LHC will be able to discover the strongly interacting
KK particles with masses upto 800 to 900 GeV.Comment: 23 pages, 7 figures and one tabl
Collapse and revival of oscillations in a parametrically excited Bose-Einstein condensate in combined harmonic and optical lattice trap
In this work, we study parametric resonances in an elongated cigar-shaped BEC
in a combined harmonic trap and a time dependent optical lattice by using
numerical and analytical techniques. We show that there exists a relative
competition between the harmonic trap which tries to spatially localize the BEC
and the time varying optical lattice which tries to delocalize the BEC. This
competition gives rise to parametric resonances (collapse and revival of the
oscillations of the BEC width). Parametric resonances disappear when one of the
competing factors i.e strength of harmonic trap or the strength of optical
lattice dominates. Parametric instabilities (exponential growth of Bogoliubov
modes) arise for large variations in the strength of the optical lattice.Comment: 9 pages, 20 figure
- …