15 research outputs found

    Performance Limiting Factors of Cu2ZnSn(SxSe1-x)4 Solar Cells Prepared by Thermal Evaporation

    Get PDF
    Cu2ZnSn(SxSe1−x)4 (CZTSSe) thin film solar cells have been prepared by vacuum-based thermal evaporation of metal and binary sulfide precursors followed by annealing in a mixed chalcogen vapor at 550 °C for one hour. The Zn/Sn ratio in the precursor was varied from 0.75 to 1.50 keeping the Cu/(Zn+Sn) ratio constant at 0.7. The best performing solar cell was obtained with a final film composition of Cu/(Zn+Sn)=0.77 and Zn/Sn=1.13 corresponding to a Zn/Sn ratio of 0.9 in the precursor. The champion cell exhibited an open-circuit voltage (VOC) of 506 mV, short-circuit current density (JSC) of 22.92 mA/cm2, and a fill factor (FF) of 35% resulting in a total area efficiency (η) of 4.06% without any antireflection coating. Cell performance was found to be limited by high series resistance (RS)=31.1 Ω and a low shunt resistance (Rsh)=125.2 Ω. No detrimental secondary phases, such as Cu2−xS(Se) or ZnS were detected in the absorber film. Microstructural investigation suggested that small multigrain structure of the CZTSSe absorber layer, presence of an interfacial Mo(S,Se)x blocking barrier, and micro-air-voids at the Mo back contact are the major contributors to the origin of high Rs. Morphological study of the CZTSSe film surface by atomic force microscopy revealed micro-pores that act as low resistance shunt paths and explains the source of such low Rsh. The performance limiting factors of the vacuum based thermally evaporated CZTSSe thin film solar cells are reported

    A Low-Cost Approach to Fabrication of Multinary Compounds for Energy-Related Applications

    No full text
    Non-vacuum electrodeposition and electroless deposition techniques with a potential to prepare large-area uniform precursor films using low-cost source materials and low-cost capital equipment are very attractive for the growth of compound materials for superconductors and photovoltaic applications. In the first part, a low-cost electrodeposition (ED) method will be discussed for fabrication of high-temperature Tl-oxide-based superconductors. In the second part, electrodeposition and electroless deposition of semiconductor Cu-In-Ga-Se thin films will be discussed

    Electrodeposition process for the preparation of superconducting thallium oxide films

    No full text
    This material is presented to ensure timely dissemination of scholarly and technical work. Copyright and all rights therein are retained by authors or by other copyright holders. All persons copying this information are expected to adhere to the terms and constraints invoked by each author's copyright. In most cases, these works may not be reposted without the explicit permission of the copyright holder
    corecore