29 research outputs found

    Effects of n-3 fatty acids on autoimmunity and osteoporosis

    Get PDF
    Decreased consumption of n-3 fatty acids (FA) and diets rich in animal proteins, saturated fats and n-6 vegetable oils are associated with a higher incidence of cardiovascular disease (CVD), certain malignancies and autoimmune disorders such as rheumatoid arthritis and Systemic Lupus Erythromatous (SLE), and renal disease. Recent studies show that reduced calorie intake and supplementation of diet with n-3 FA delays the onset of autoimmune renal disease, primarily, due to increased antioxidant enzyme activities, decreased NF-kappaB activation and decreased IL-1, IL-6 and TNF-alpha mRNA expression in the kidney tissue. Studies in rodents show that addition of n-3 FA and soy protein to diet affords protection against bone loss induced by ovariectomy in mice due to NF-kappaB expression and decreased activation of osteoclasts. Together, the availale evidence show that increased daily intake of dietary n-3 FA decreases the severity of autoimmune disorders, lessens the chance of developing CVD, and protects against bone loss during post-menopause

    Effects of conjugated linoleic acid and exercise on bone mass in young male Balb/C mice

    Get PDF
    There is an increase in obesity among the population of industrialized countries, and dietary supplementation with Conjugated Linoleic Acid (CLA) has been reported to lower body fat mass. However, weight loss is generally associated with negative effects on bone mass, but CLA is reported to have beneficial effects on bone. Furthermore, another factor that is well established to have a beneficial effect on bone is exercise (EX). However, a combination therapy of CLA and EX on bone health has not been studied. In this paper, we report the beneficial effects of CLA and EX on bone, in four different groups of Balb-C young, male mice. There were 4 groups in our study: 1. Safflower oil (SFO) sedentary (SED); 2. SFO EX; 3. CLA SED; 4. CLA EX. Two months old mice, under their respective treatment regimens were followed for 14 weeks. Mice were scanned in vivo using a DEXA scanner before and after treatment. At the end of the treatment period, the animals were sacrificed, the left tibia was removed and scanned using peripheral quantitative computerized tomography (pQCT). The results showed that although CLA decreased gain in body weight by 35%, it however increased bone mass by both reducing bone resorption and increasing bone formation. EX also decreased gain in body weight by 21% and increased bone mass; but a combination of CLA and EX, however, did not show any further increase in bone mass. In conclusion, CLA increases bone mass in both cancellous and cortical bones, and the effects of CLA on bone is not further improved by EX in pure cortical bone of young male mice

    Effects of conjugated linoleic acid and exercise on bone mass in young male Balb/C mice

    Get PDF
    There is an increase in obesity among the population of industrialized countries, and dietary supplementation with Conjugated Linoleic Acid (CLA) has been reported to lower body fat mass. However, weight loss is generally associated with negative effects on bone mass, but CLA is reported to have beneficial effects on bone. Furthermore, another factor that is well established to have a beneficial effect on bone is exercise (EX). However, a combination therapy of CLA and EX on bone health has not been studied. In this paper, we report the beneficial effects of CLA and EX on bone, in four different groups of Balb-C young, male mice. There were 4 groups in our study: 1. Safflower oil (SFO) sedentary (SED); 2. SFO EX; 3. CLA SED; 4. CLA EX. Two months old mice, under their respective treatment regimens were followed for 14 weeks. Mice were scanned in vivo using a DEXA scanner before and after treatment. At the end of the treatment period, the animals were sacrificed, the left tibia was removed and scanned using peripheral quantitative computerized tomography (pQCT). The results showed that although CLA decreased gain in body weight by 35%, it however increased bone mass by both reducing bone resorption and increasing bone formation. EX also decreased gain in body weight by 21% and increased bone mass; but a combination of CLA and EX, however, did not show any further increase in bone mass. In conclusion, CLA increases bone mass in both cancellous and cortical bones, and the effects of CLA on bone is not further improved by EX in pure cortical bone of young male mice

    Endogenous n-3 fatty acids protect ovariectomy induced bone loss by attenuating osteoclastogenesis

    Get PDF
    Beneficial effects of n-3 fatty acids (FA) on bone mineral density (BMD) have been reported in mice, rats and human beings, but the precise mechanisms involved have not been described. This study used the Fat-1 mouse, a transgenic model that synthesizes n-3 FA from n-6 FA to directly determine if outcome of bone health were correlated with n-3 FA. Ovariectomized (Ovx) and sham operated wild-type (WT) and Fat-1 mice were fed an AIN-93M diet containing 10% corn oil for 24 weeks. BMD was analysed by dual energy x-ray absorptiometry. Fat-1 Ovx mice exhibited significantly lower level of osteotropic factors like receptor activator of NF-κB ligand and tartrate-resistant acid phosphatase (TRAP)5b in serum and higher BMD in distal femoral metaphysis, proximal tibial metaphysis, femoral diaphysis and lumbar vertebra as compared to WT Ovx mice. LPS-stimulated bone marrow (BM) cells from Fat-1 Ovx mice produced significantly lower level of pro-inflammatory cytokines like tumour necrosis factor-α, interleukin (IL)-1-β, IL-6 and higher level of anti-inflammatory cytokines like IL-10, IFN-γ and higher level of nitric oxide as compared to BM cells from WT Ovx mice. LPS-stimulated COX-II activity as well as NF-κB activation in BM cells from Fat-1 Ovx mice was significantly less as compared to BM cells from WT Ovx mice. Furthermore, Fat-1 BM cells generated significantly less number of TRAP osteoclast-like cells as compared to WT BM cells. In conclusion, we offer further insight into the mechanisms involved in preventing the BMD loss in Ovx mice by n-3 FA using a Fat-1 transgenic mouse model

    Adaptogenic activity of Siotone, a polyherbal formulation of Ayurvedic rasayanas

    No full text
    119-128Siotone (ST) is a herbal formulation comprising of Withania somnifera, Ocimum sanctum, Asparagus racemosus, Tribulus terristris and shilajit, all of which are classified in Ayurveda as rasayanas which are reputed to promote physical and mental health, improve defence mechanisms of the body and enhance longevity. These attributes are similar to the modern concept of adaptogenic agents, which are, known to afford protection of the human physiological system against diverse stressors. The present study was undertaken to investigate the adaptogenic activity of ST against chronic unpredictable, but mild, footshock stress induced perturbations in behaviour (depression), glucose metabolism, suppressed male sexual behaviour, immunosuppression and cognitive dysfunction in CF strain albino rats. Gastric ulceration, adrenal gland and spleen weights, ascorbic acid and corticosterone concentrations of adrenal cortex, and plasma corticosterone levels, were used as the stress indices. Panax ginseng (PG) was used as the standard adaptogenic agent for comparison. Additionally, rat brain levels of tribulin , an endogenous endocoid postulated to be involved in stress, were also assessed in terms of endogenous monoamine oxidase (MAO) A and MAOB inhibitory activity. Chronic unpredictable footshock induced marked gastric ulceration, significant increase in adrenal gland weight and plasma corticosterone levels, with concomitant decreases in spleen weight, and concentrations of adrenal gland ascorbic acid and corticosterone. These effects were attenuated by ST (50 and 100 mg/kg, p.o) and PG (100 mg/kg, p.o), administered once daily over a period of 14 days, the period of stress induction. Chronic stress also induced glucose intolerance, suppressed male sexual behaviour. Induced behavioural depression (Porsolt 's swim despair test and learned helplessness test) and cognitive dysfunction (attenuated retention of learning in active and passive avoidance tests), and immunosuppression (leucocyte migration inhibition and sheep RBC challenged increase in paw oedema in sensitized rats). All these chronic stress-induced perturbations were attenuated, dose-dependently by ST (50 and 100 mg/kg, p.o.) and PG (100 mg/kg, p.o.). Chronic stress-induced increase in rat brain tribulin activity was also reversed by these doses of ST and by PG. The results indicate that ST has significant adaptogenic activity, qualitatively comparable to PG, against a variety of behavioural, biochemical and physiological perturbations induced by unpredictable stress, which has been proposed to be a better indicator of clinical stress than acute stress parameters. The likely contribution of the individual constituents of ST in the observed adaptogenic action of the polyherbal formulation, have been discussed

    Antioxidant activity of tannoid principles of <i>Emblica officinalis </i>(amla) in chronic stress induced changes in rat brain

    No full text
    877-880Effect of tannoid principles emblicanin A, emblicanin B, punigluconin, and pedunculagin of E. officinalis was assessed on chronic unpredictable footshock-induced stress-induced perturbations in oxidative free radical scavanging enzymes in rat brain frontal cortex and striatum. Chronic stress, administered over a period of 21 days, induced significant increase in rat brain frontal cortical and striatal superoxide dismutase (SOD) activity, concomitant with significant reduction in catalase (CAT) and glutathione peroxidase (GPX) activity. The changes in the enzyme activities was accompanied by an increase in lipid peroxidation, in terms of augmented thiobarbituric acid-reactive products. Administration of Emblica tannoids (10 and 20 mg, po) for 21 days, concomitant with the stress procedure, induced a dose-related alteration in the stress effects. Thus, a tendency towards normalization of the activities of SOD, CAT and GPX was noted in both the brain areas, together, with reduction in lipid peroxidation. The results indicate that the reported antistress rasayana activity of E. officinalis may be, at least partly due to its tendency to normalize stress-induced perturbations in oxidative free radical scavenging activity, in view of the postulate that several stress-induced diseases, including the process of aging, may be related to accumulation of oxidative free radicals in different tissues

    <span style="font-size:14.0pt;line-height: 115%;font-family:"Times New Roman";mso-fareast-font-family:"Times New Roman"; color:black;mso-ansi-language:EN-IN;mso-fareast-language:EN-IN;mso-bidi-language: HI" lang="EN-IN">Antioxidant activity of active tannoid principles of <i>Emblica officinalis </i>(amla)</span>

    No full text
    676-680The antioxidant activity of tannoid active principles of E. officinalis consisting of emblicanin A (37%), emblicanin B (33%), punigluconin (12%) and pedunculagin (14%), was investigated on the basis of their effects on rat brain frontal cortical and striatal concentrations of the oxidative free radical scavenging enzymes, superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPX), and lipid peroxidation, in terms of thiobarbituric acid-reactive products. The results were' compared with effects induced by deprenyl, a selective monoamine oxidase (MAO) B inhibitor with well documented antioxidant activity. The active tannoids of E. officinalis (EOT), administered in the doses of 5 and 10 mg/kg. i.p .. and deprenyl (2 mg/kg, i.p.), induced an increase in both frontal cortical and striatal SOD, CAT and GPX activity, with concomitant decrease in lipid peroxidation in these brain areas when administered once daily for 7 days. Acute single administration of EOT and deprenyl had insignificant effects. The results also indicate that the antioxidant activity of E. officinalis may reside in the tannoids of the fruits of the plant, which have vitamin C-like properties, rather than vitamin C itself.
    corecore