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Introduction

Post-menopausal osteoporosis due to oestrogen deficiency is a
major health problem, primarily because of the severe morbidity
and mortality associated with osteoporotic fractures. Oestrogen
and/or hormone replacement therapies (ERT and/or HRT) are
able to prevent osteoporotic bone loss, however, accompanied
by adverse side-effects, such as uterine, ovarian and breast can-
cer and increased risk of cardiovascular diseases [1, 2].
Therefore, diet therapies that minimize bone loss would be an
ideal alternative.

Recently, there has been increasing evidence that deficiency of
certain fatty acids (FA) in the diet may contribute to bone loss
[3–5]. A body of scientific evidence based on results in cell cul-
tures [6, 7], animals [6–11] and human beings [4] indicates that
long-chain n-3 polyunsaturated FA may protect skeletal health and
potentially improve conditions associated with osteoporosis. In
animal models, it has been shown that n-3 FA deficiency caused
severe osteoporosis [12]. When deficient animals were replen-
ished with n-3 FA, the ratio of n-3 to n-6 FA in bone compartments
was restored and the process of bone degradation was reversed
[13]. Different dietary ratios of n-6 to n-3 FA were tested in piglets
and shown that higher n-3 FA levels in blood were associated with
lower bone resorption [14]. In a clinical trial of 65 elderly women
whose diet was low in calcium, supplementation with a lower ratio
of n-6 and n-3 FA plus calcium resulted in decreased bone degra-
dation and increased BMD [4]. In another randomized trial in 
40 patients with osteoporosis, individuals taking a supplement
rich in n-3 FA showed better calcium absorption and increased
markers of bone formation as compared to placebo group [12].
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Beneficial effects of n-3 fatty acids (FA) on bone mineral density (BMD) have been reported in mice, rats and human beings, but the 
precise mechanisms involved have not been described. This study used the Fat-1 mouse, a transgenic model that synthesizes n-3 FA
from n-6 FA to directly determine if outcome of bone health were correlated with n-3 FA. Ovariectomized (Ovx) and sham operated wild-
type (WT) and Fat-1 mice were fed an AIN-93M diet containing 10% corn oil for 24 weeks. BMD was analysed by dual energy x-ray
absorptiometry. Fat-1 Ovx mice exhibited significantly lower level of osteotropic factors like receptor activator of NF-�B ligand and
 tartrate-resistant acid phosphatase (TRAP)5b in serum and higher BMD in distal femoral metaphysis, proximal tibial metaphysis, femoral
diaphysis and lumbar vertebra as compared to WT Ovx mice. LPS-stimulated bone marrow (BM) cells from Fat-1 Ovx mice produced
significantly lower level of pro-inflammatory cytokines like tumour necrosis factor-�, interleukin (IL)-1-�, IL-6 and higher level of anti-
inflammatory cytokines like IL-10, IFN-� and higher level of nitric oxide as compared to BM cells from WT Ovx mice. LPS-stimulated
COX-II activity as well as NF-�B activation in BM cells from Fat-1 Ovx mice was significantly less as compared to BM cells from WT Ovx
mice. Furthermore, Fat-1 BM cells generated significantly less number of TRAP osteoclast-like cells as compared to WT BM cells. 
In conclusion, we offer further insight into the mechanisms involved in preventing the BMD loss in Ovx mice by n-3 FA using a Fat-1
transgenic mouse model.
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We speculate that by modulating the dietary ratio of n-6/n-3 FA,
bone growth can be optimized.

Mammalian cells can neither synthesize n-3 FA nor convert 
n-6 to n-3 FA as they lack the converting enzyme, n-3 desat-
urase. The consumption of fish rich in n-3 FA is recommended
for its health benefits to protect against heart disease, diabetes
and potentially cancer [15]. High-fat diets are pervasive in
Western cultures. American people consume very minimal n-3
FA in relation to the amount of n-6 FA. n-3 FA stimulate produc-
tion of anti-inflammatory eicosanoids that attenuate the produc-
tion of cytokines and associated bone resorption, whereas its
cousin in n-6 FA stimulate production of pro-inflammatory
eicosanoids that stimulate bone resorption by releasing
cytokines to activate NF-�B [12, 16].

In 2004, Kang et al. generated transgenic Fat-1 mouse (Fat-1)
on C57BL6 background carrying the fat-1 gene from
Caenorhabditis elegans, which encodes for an n-3 desaturase
enzyme that can synthesize n-3 FA from n-6 FA [17]. Different tis-
sues of Fat-1 mice show increase in n-3 FA and decrease in n-6 FA
leading to a significant decrease in n-6/n-3 FA ratio. Thus, Fat-1
transgenic mice have an n-6/n-3 FA ratio of ~1: 1 compared to
wild-type (WT) mice with ratio of 20–30: 1. Preliminary studies
with Fat-1 mouse have already yielded interesting results. We and
others have shown that Fat-1 mice attenuate inflammatory
response following bacterial lipopolysaccharide (LPS) challenge
[18, 19]. To examine the effect of FA, dietary lipid feeding studies
using an intact animal model system are useful; however, these
are confounded by the need to formulate isocaloric diets with
respect to fat content. In addition, to formulate diets with different
n-6 to n-3 ratios requires the blending of several oil sources; thus,
the fat composition between control and experimental diets is dif-
ficult to control. The Fat-1 mouse model is not subject to these
potential confounders, given that Fat-1 mice can endogenously
synthesize n-3 FA; thus, only one diet needs to be provided to both
WT and Fat-1 mice. Thus, the Fat-1 mouse represents a significant
advance in the development of a more sophisticated research
model to investigate the effect of n-3 FA and n-6/n-3 FA ratio on
physiological parameters, inflammation and molecular mecha-
nisms without providing exogenous n-3 FA in form of fish oil.
Although the research on n-3 FA and bone health is promising,
researchers have yet to establish a clear mechanism of action. In
this study, we used this Fat-1 transgenic ovariectomized (Ovx)
mouse model to establish n-3 FA as a preventive drug to post-
menopausal osteoporosis, and to dissect the molecular mecha-
nisms underlying this effect.

Materials and methods

Animals and diet

Male transgenic Fat-1 C57BL6 mice were obtained from Dr. Jing Kang at
the Harvard Medical School. They were mated with WT C57BL6 female

mice to obtain female fat-1 positive C57BL6 mice (Fat-1) and fat-1 nega-
tive C57BL6 mice (WT) identified by genotyping using REDExtract-N-Amp
Tissue PCR Kit from Sigma (St Louis, MO, USA) and analyzing the FA com-
position of tails by using gas chromatography as described previously
[19]. Weight-matched mice were housed in a laboratory animal care facil-
ity in cages (three to four mice/cage) and fed semi-purified AIN-93M diets
containing 10% corn oil (CO) (MP Biomedicals, Irvine, CA). CO is high in
linoleic acid (18: 2n-6) and Fat-1 mice convert n-6 FA to n-3 FA. The com-
position of the semi-purified diet per kilogram of diet was: 140 g of casein,
424.3 g of corn starch, 145 g of dextronized corn starch, 90 g of sucrose,
50 g of fibre, 35 g of AIN-93 mineral mix, 10 g of AIN-93 vitamin mix, 1.8 g
of L-cystine and 2.5 g of choline bitartrate. Diets were prepared weekly and
stored in aliquots at �20�C. Fresh diet was provided daily, and leftover
food was removed to prevent rancidity. At 2 months age, 40 weight-
matched WT mice and Fat-1 mice were sham operated (10 mice per group)
or Ovx (10 mice per group). Forty mice with four groups of 10 were main-
tained on 10% CO diet for 24 weeks until killing. The National Institutes of
Health guidelines provided in ‘The Guide for the Care and Use of
Laboratory Animals’ were strictly followed, and all studies were approved
by the Institutional Laboratory Animal Care and Use Committee of the
University of Texas Health Science Center at San Antonio.

Serum RANKL and TRAP5b measurement

Four weeks before termination of the study, blood was collected retro-
orbitally and serum was separated. Serum receptor activator of NF-�B 
ligand (RANKL) and tartrate resistant acid phosphatase (TRAP) were
measured using mouse free soluble (s)RANKL and mouse TRAP5b ELISA
assay kits from Immunodiagnostic System (IDS) Inc. (Fountain Hills, AZ,
USA) according to the manufacturer’s instructions [20].

Measurement of bone mineral density (BMD)

BMD was measured by dual energy x-ray absorptiometry (DEXA) at baseline
(8 weeks) and after 24 weeks on 10% CO diet using a Lunar PIXImus mouse
bone densitometer (General Electric, Madison, WI, USA) and data analysis was
carried out manually with PIXImus software as described previously [21, 22].

Isolation of whole bone marrow cells and culture

Whole bone marrow (BM) cells were aseptically isolated as described 
elsewhere [23]. Cells were counted and viability was determined by trypan
blue exclusion method. Cells (10 � 106/well) were plated in 12-well plates
and bacterial LPS was added at the concentration of 5.0 	g/ml for 24 hrs
at 37�C in a humidified atmosphere of air/CO2 95: 5 (mol%). After 24 hrs,
cells and culture medium were collected together and centrifuged at 
2000 rpm for 5 min. The pellets were stored at –80�C for transcription fac-
tor assays and supernatants were analysed for tumour necrosis factor
(TNF)-�,, interleukin (IL)-1�, IL-6, IL-10, interferon (IFN)-� and nitric oxide.

Analysis for fatty acids in bone marrow cells

Whole BM cells (~1 � 106 cells) were used for the extraction of total lipids
by the method of  Folch et al. using chloroform: methanol (2: 1) as
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described previously [24, 25]. FA methyl esters were separated and quan-
tified by gas–liquid chromatography using a Hewlett-Packard 5890A series
II gas chromatograph (Hewlett-Packard, Palo Alto, CA, USA), equipped
with a DB225MS capillary column (J&W Scientific, Folsom, CA, USA). FA
methyl esters were identified by comparison of retention times with FA
methyl ester standard (FIM-FAME-7) from Matreya, Inc. (Pleasant Gap, PA,
USA). Quantification was performed by an integrator (Hewlett-Packard
3396 series II) attached to a gas liquid chromatograhy (GLC) machine, and
results were expressed as area percentages.

Cytokine measurement in bone marrow culture
supernatants

TNF-�, IL-1�, IL-6, IL-10 and IFN-� were measured by ELISA using BD
OptEIA™ ELISA kits from BD Biosciences Pharmingen (San Diego, CA,
USA) according to the manufacturer’s instruction.

Nitric oxide measurement in bone marrow culture
supernatants

Nitric oxide was measured in LPS-treated BM culture supernatant using
quantichrome nitric oxide assay kit (DINO-250) from Bioassay Systems
(Hayward, CA, USA).

Protein preparation

After 24 hrs of BM culture in the presence of LPS, cells were collected.
Cytosolic and nuclear proteins were prepared as described previously [23].
Protein concentrations of the nuclear extracts, and cytosolic extracts were
determined using a bicinchoninic acid (BCA) protein assay kit.

Cyclo-oxygenase-II (COX-II) activation assay

One hundred micrograms of cytosolic protein of 24-hr LPS-treated BM
cells from WT and Fat-1 mice were analysed for COX-II activity using CAYMAN
COX Activity Assay Kit (Cayman, Ann Arbor, MI, USA) according to the
manufacturer’s instruction.

Western blot analysis

Thirty micrograms of cytosolic extracts were subjected to SDS-PAGE.
Proteins were transferred to immunoblot polyvinylidene difluoride mem-
branes (BioRad, Hercules, CA, USA) and subjected to Western blot 
analysis. Rabbit polyclonal antibody against I�B-� and mouse monoclonal
antibody against phosphorylated I�B-� were obtained from Santa Cruz
Biotechnology, Inc (Santa Cruz, CA, USA).

NF-�B activation assay

LPS-treated BM cells pellets obtained after collecting supernatants were
analysed for LPS-stimulated activation of NF-�B using NF-�B transcrip-
tion factor assay kit (Active Motif, Carlsbad, CA, USA) according to the
manufacturer’s instructions. NF-�B-DNA binding was analysed for 

NF-�B p65 and NF-�B p50 subunits. Briefly, a total of 10 	g of nuclear
extracts were incubated with mild agitation for 1 hr at room temperature
with binding buffer in microwells coated with probes containing the 
NF-�B consensus binding sequence. The microwells were then washed
three times. Anti-NF-�B antibody was added to each well and incubated
for 1 hr at room temperature. The microwells were then washed three
times before being incubated with HRP-conjugated antibody for 1 hr at
room temperature. The microwells were then washed four times and
then exposed to tetramethylbenzidine for 10 min. at room temperature
before the stop solution was added. The optical density was read at 
450 nm using a microplate reader (Dynex Technologies, Worthing, UK).

Osteoclast differentiation in BM cultures

BM cells from the tibias and femurs of WT and Fat-1 mice were col-
lected and cultured as described previously by Rahman et al. [23].
Briefly, cells were suspended in �-MEM containing 15% foetal calf
serum and cultured in 48-well plates (1 � 106 cells/ml). Osteoclast 
differentiation was induced in the presence of macrophage colony-
stimulating factor (M-CSF) (20 ng/ml) and sRANKL (30 ng/ml) for 
4 days. At the end of the culture, the cells were fixed and then stained
with a commercial kit for TRAP (no. 387A; Sigma), a marker enzyme for
osteoclast. TRAP
 cells with more than three nuclei were counted as
osteoclast (multinucleated cells).

Statistics

Data are expressed as means � S.E.M. To test the significance either
Student’s t-test or Newman-Keuls’ one-way ANOVA was used. The signifi-
cance of differences in BMD from baseline to end of study between WT and
transgenic groups were analysed by unpaired t-test. The GraphPad Prism
4.0 was employed for the statistical analyses. Differences were considered
significant when P � 0.05.

Results

Fatty acid profiles of bone marrow cells

The fat-1 gene of C. elegans encodes an n-3 fatty-acid desaturase
enzyme that converts n-6 to n-3 FA and which is absent in most
animals, including mammals [26]. Both WT and Fat-1-transgenic
littermates born to the same mother and were maintained on an
identical diet that was high in n-6 but deficient in n-3 FA. However,
the fatty-acid profiles of the two groups turned out to be quite 
different in BM cells (Table 1). During this dietary regime, Fat-1
mice had significantly higher amounts of n-3 FA, such as eicos-
apentaenoic acid (EPA), docosapentaenoic acid (DPA) and
docosahexaenoic acid (DHA), in BM cells compared with WT mice
(Table 1). The ratio of the long-chain n-6 FA (18: 2n-6 
 20: 4n-6

22: 4n-6 
 22: 5n-6) to the long-chain n-3 FA (18: 3n-3 
 20:
5n-3 
 22: 5n-3 
 22: 6n-3) was 5.9 in Fat-1 mice and 20.6 in
WT mice and an arachidonic acid (AA)/(EPA
DPA
DHA) ratio 
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of 0.92 versus 4.84. This means transgene is functionally active 
in vivo and transmittable.

Effect of endogenous n-3 fatty acids on serum
sRANKL and TRAP5b

We measured the sRANKL and TRAP5b levels in serum col-
lected retro-orbitally 4 weeks before termination of the study to
determine the bone resorbing status in sham and Ovx mice.
RANKL is one of the most pivotal osteoclastogenic factors 
[27, 28] and serum TRAP5b level indicates the current status of
osteoclasts function, i.e. TRAP activity. Interestingly, we found
both serum RANKL and TRAP5b levels were significantly less in
Fat-1 Ovx mice than in WT Ovx mice (Fig. 1A and B). The results
indicate that the key bone resorbing osteoclastogenic factors
are reduced due to the presence of endogenous n-3 FA, which
supports the earlier findings that n-3 FA down-regulate osteo-
clastogenic factors [10, 29].

Effect of endogenous n-3 fatty acids on BMD

We have examined the baseline BMD of different bone regions
prior to sham and Ovx surgery using DEXA. There were no 
differences in baseline BMD values among the groups (data not
shown). To examine the effect of endogenous n-3 FA on Ovx-

induced bone loss, we measured the BMD of femur, tibia and
lumber regions 24 weeks after sham and Ovx surgery using
DEXA. The results are shown in Table 2. The BMD in the distal
end of the femur, the proximal end of the tibia and the lumbar
regions of the spine of WT Ovx mice were significantly lower
than that in WT sham mice. The BMD of different regions of 
Fat-1 Ovx mice was also lower than in Fat-1 sham mice.
However, the reduction in BMD was not significant. Comparing
between WT Ovx mice (without endogenous n-3 FA production)
and Fat-1 Ovx mice (with endogenous n-3 FA production), the
BMD loss was significantly higher in femoral, tibial and third
lumber regions of the WT mice group. Thus, lower ratio of 
n-6/n-3 FA due to endogenous production of n-3 FA maintains
higher BMD in Fat-1 Ovx mice compared to WT Ovx mice. These
findings indicate that Fat-1 mice, rich in n-3 FA, are at least 
better protected in oestrogen deficient BMD loss. To confirm the
oestrogen status of the Ovx or sham mice, the uterine wet weight
was measured at the time of killing. Ovariectomy performed in 
8-week-old mice significantly decreased the uterus weight of
both WT and Fat-1 mice (data not shown). The fat-1 transgene
had no effect on the uterus weight of sham or Ovx mice.

Effect of endogenous n-3 fatty acids on 
LPS stimulated cytokine production by bone 
marrow cells

We next examined whether the Ovx-induced BMD loss protec-
tion observed in Fat-1 mice had an impact on bone resorbing
inflammation-related cytokines expression. Pro-inflammatory
cytokines like IL-1�, IL-6 and TNF-� are key regulators of osteo-
clastogenic activity and have been shown to increase bone
resorption [30–32]. Interestingly, we found significant increase
in IL-1� and TNF-� production by BM cells of WT Ovx mice than
that of WT sham mice, whereas no increase of these cytokines
was observed in Fat-1 Ovx mice when compared to Fat-1 sham
mice (Fig. 2). However, there was no significant difference in 
IL-6 production between the sham and Ovx mice in both WT and
Fat-1 groups. Significantly higher level of IL-1�, TNF-� and IL-6
was observed in WT Ovx mice when compared to Fat-1 Ovx
mice. Surprisingly, we found significantly lower level of TNF-�
in Fat-1 Ovx group than in Fat-1 sham group. We then examined
if reduced n-6/n-3 FA ratio due to endogenous conversion of 
n-6 to n-3 FA can stimulate the production of anti-inflammatory
cytokines like IL-10 and IFN-�. IL-10 is reported to inhibit bone
resorption in inflammatory disorders [33, 34] and IFN-� is a
strong suppressor of osteoclastogenesis [35]. Interestingly, 
we observed significantly higher level of both IL-10 and IFN-�
production by BM cells of Fat-1 Ovx mice when compared to WT
Ovx mice (Fig. 2). The results indicate that the reduction of 
n-6/n-3 FA ratio may prevent Ovx-induced BMD loss indirectly 
by inhibiting the production of osteoclastogenic pro-inflammatory
cytokines and by enhancing the production of anti-osteoclastogenic
anti-inflammatory cytokines.

© 2009 The Authors
Journal compilation © 2009 Foundation for Cellular and Molecular Medicine/Blackwell Publishing Ltd

PUFAs WT Fat-1

18: 2n-6 (LA) 25.34 � 0.41 24.27 � 0.83

18: 3n-3 0.24 � 0.09 0.38 � 0.01*

20: 4n-6 (AA) 6.48 � 0.10 4.16 � 0.30*

20: 5n-3 (EPA) 0.20 � 0.02 1.05 � 0.10*

22: 4n-6 0.25 � 0.01* ND

22: 5n-6 0.37 � 0.04 0.12 � 0.01*

22: 5n-3 (DPA) ND 0.32 � 0.01*

22: 6n-3 (DHA) 1.14 � 0.07 3.17 � 0.40*

n-6/n-3 20.58 � 1.10 5.89 � 0.90*

AA/EPA
DPA
DHA 4.84 � 1.11 0.92 � 0.59*

Table 1 Profiles of polyunsaturated n-6 and n-3 fatty acids in bone
marrow cells from WT or fat-1 transgenic (Fat-1) mice

Total lipids of serum were extracted, methylated and subjected to
analysis by gas chromatography. The values (% of total fatty acids) are
means of three independent measurements � S.E.M. n  7. ND, not
detected.
*Significant difference (P � 0.05) between WT and Fat-1 transgenic
mice.
Ratio of n-6/n-3 fatty acids is expressed as (18: 2n-6 
 20: 4n-6 
22:
4n-6 
 22: 5n-6)/(18: 3n-3 
 20: 5n-3 
 22: 5n-3 
 22: 6n-3).
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Effect of endogenous n-3 fatty acids on LPS 
stimulated nitric oxide production by bone 
marrow cells

Nitric oxide has been reported to be a potent anti-osteoclasto-
genic and anti-osteoporotic in severe inflammatory and oestro-
gen deficient animals. Therefore, we next determined if there is
any effect of endogenous n-3 FA on LPS-stimulated nitric oxide
production by BM cells. Interestingly, we observed higher levels
of nitric oxide production in BM cells from Fat-1 mice both sham
and Ovx than from WT mice (Fig. 3). That might be another anti-

osteoclastogenic mechanism exerted by endogenous n-3 FA to
protect Ovx-induced BMD loss.

Effect of endogenous n-3 fatty acids on LPS 
stimulated COX-II activity

Over expression of COX-II stimulates osteoclastogenesis and bone
resorption [36] and n-3 FA are reported to down-regulate COX-II
expression. Therefore, we examined whether lower ratio of n-6/n-3
FA due to endogenous production of n-3 FA also have the COX-II
reducing ability which might be one of the mechanisms by which it

© 2009 The Authors
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Fig. 1 Endogenous n-3 fatty acids
reduce serum RANKL and TRAP5b.
After 20 weeks on experimental diet
serum was separated from blood
collected retro-orbitally from WT
and Fat-1 transgenic sham and Ovx
mice (seven mice/groups). Serum
was analysed for (A) free serum
RANKL and (B) TRAP5b levels using
standard ELISA kits. Each bar repre-
sents the mean � S.E.M. of seven
duplicate samples. Value with differ-
ent superscripts are significantly dif-
ferent at P � 0.05 by Newman-
Keuls’ one way ANOVA with multiple
comparison test.

Bone
regions

WT Fat-1
P-value2 P-value3

Sham Ovx P-value1 % change Sham Ovx P-value1 % change

DFM 87.02 � 2.91 72.87 � 1.43 0.001* �16.26 89.90 � 1.87 87.23 � 1.90 0.340 �2.97 0.423 0.0001*

PTM 72.17 � 1.25 62.73 � 1.99 0.003* �13.08 72.62 � 1.46 72.83 � 1.78 0.927 0.29 0.820 0.004*

FD 73.97 � 1.62 69.27 � 1.90 0.089 �6.35 80.87 � 2.52 78.63 � 2.23 0.522 �2.77 0.044* 0.01*

TD 44.93 � 0.86 45.40 � 0.42 0.596 1.05 48.63 � 0.84 49.52 � 1.52 0.622 1.83 0.018* 0.026*

L2 62.92 � 3.36 46.70 � 2.47 0.003* �25.78 58.47 � 4.46 47.88 � 6.63 0.215 �18.11 0.444 0.870

L3 60.98 � 3.49 39.27 � 2.96 0.001* �35.60 57.35 � 4.78 51.80 � 4.82 0.433 �9.68 0.553 0.05*

L4 56.23 � 1.72 43.03 � 2.64 0.002* �23.48 50.43 � 2.73 48.82 � 2.75 0.685 �3.19 0.102 0.160

Table 2 Effect of endogenous n-3 fatty acids on bone mineral density (BMD) (mg/cm2) of ovariectomized (Ovx) mice a

a Values are means � S.E.M., n  8.
1 Student’s t-test comparing Ovx to sham.
2 Student’s t-test comparing wild-type (WT) sham to Fat-1 transgenic (Fat-1) sham.
3 Student’s t-test comparing WT Ovx to Fat-1 Ovx.
DFM: distal femoral metaphysis; PTM: proximal tibial metaphysis; FD: femoral diaphysis; TD: tibial diaphysis; L2: lumbar vertebra 2; L3: lumbar
vertebra 3; L4: lumbar vertebra 4; *P � 0.05 was considered significant.
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Fig. 2 Endogenous n-3 fatty acids
modulate LPS-stimulated cytokines
production. Bone marrow cells from
WT and Fat-1 transgenic mice were
cultured in the presence of LPS 
(5 	g/ml). After 24 hrs, culture
media were collected and analysed
for TNF-�,, IL-1�, IL-6, IL-10 and
IFN-� by standard ELISA tech-
niques. Each value represents the
mean � S.E.M. of two independent
triplicate cultures. P-value �0.05
was considered significant by
Student’s t-test.

Fig. 3 Endogenous n-3 fatty acids increase LPS-stimulated nitric oxide
production. Bone marrow cells from WT and Fat-1 transgenic mice were
cultured in the presence of LPS (5 	g/ml). After 24 hrs, culture media
were collected and analysed for nitric oxide using quantichrome nitric
oxide assay kit. Each value represents the mean � S.E.M. of two inde-
pendent triplicate cultures. P-value �0.05 was considered significant by
Student’s t-test.
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is attenuating osteoclastogenesis and bone resorption. Interestingly,
we found significant reduction of COX-II activity in LPS-treated BM
cells from Fat-1 mice as compared to WT mice (Fig. 4).

Effect of endogenous n-3 fatty acids on LPS 
stimulated activation of NF-�B

We further examined whether endogenous n-3 FA had any impact
on the activation of NF-�B signalling. NF-�B is one of the most vital
transcription factor associated with inflammatory bone destruction
[37]. NF-�B activation is regulated by three major steps, phospho-
rylation of I-�B�, I-�B� degradation and nuclear translocation of
p50/p65 subunits. LPS-stimulated I-�B� phosphorylation and 
I-�B� degradation in BM cells were analysed by western blot. Both
I-�B� phosphorylation and I-�B� degradation were significantly
lower in Fat-1 Ovx group when compared to WT Ovx group (Fig. 5A).
Phosphorylation of I-�B� was significantly higher in WT Ovx as
compared to WT sham (Fig. 5A). However, there was no significant
difference in I-�B� phosphorylation and I-�B� degradation
between Fat-1 Ovx and sham groups (Fig. 5A). LPS-stimulated
activation of p65 and p50 NF-�B subunits were also analysed using
transcription factor assay kit. Interestingly, LPS-stimulated activa-
tion of both p65 and p50 NF-�B were significantly lower in Fat-1
Ovx group than in WT Ovx group (Fig. 5B). Surprisingly, signifi-
cantly lower level of activated p65 NF-�B was observed in Fat-1
Ovx group as compared to Fat-1 sham group (Fig. 5B).

Effect of endogenous n-3 fatty acids on RANKL
stimulated osteoclast like cells formation

Mouse BM cells can differentiate into TRAP
 osteoclasts-like cells
in the presence of RANKL and M-CSF [23]. We examined if
endogenous n-3 FA have any effect on RANKL-stimulated osteo-
clast formation. Interestingly, significant reduction of osteoclasts
formation was observed in BM cultures from Fat-1 mice as com-
pared to WT mice (Fig. 6A and 6B).

Discussion

The present study was designed to examine the effect of an
endogenously decreased n-6/n-3 FA status due to endogenous
conversion of n-6 to n-3 FA on Ovx-induced BMD loss in Fat-1
mice versus WT control littermates. This study demonstrated that
higher n-3 FA and lower n-6/n-3 FA level in BM phospholipids in
Fat-1 mice could maintain higher BMD in oestrogen deficient con-
dition when compared to that of WT mice. The decreased BMD
loss in femur, tibia and lumbar regions of Fat-1 mice was accom-
panied by a lower incidence of osteoclastogenesis. These changes
were, on a molecular level, accompanied by a lower activation 
NF-�B together with lower activity of COX-II, reduced production
of pro-inflammatory cytokines TNF-�, IL-6 and IL1-�, increased

production of anti-inflammatory cytokines IL-10, IFN-� and
increased production of nitric oxide in BM cells of Fat-1 mice. We
previously showed that dietary n-3 FA fed mice exhibit less Ovx-
induced BMD loss accompanied by decreased osteoclastogenesis
[10]. The molecular mechanisms underlying this protective effect
are not clear yet. As Fat-1 transgenic mouse model eliminates
confounding factors between control and experimental diets, we
have chosen the Fat-1 transgenic mice to elucidate the molecular
mechanisms underlying the protective effect of increased n3 and
decreased n-6/n-3 FA tissue status.

The relative ratio between n-6 and n-3 FA is an important deter-
minant in the overall health benefits of consuming n-3 FA [38, 39].
The n-6 to n-3 ratio consumed in the present Western diet is
between 10: 1 and 20: 1; however, our ancestors had a diet closer
to 1: 1 [40]. A lower n-6 to n-3 FA ratio may be optimal for one’s
health. Efforts have been made to incorporate n-3 FA into the food
supply because of their health benefits and concern over the high
n-6: n-3 FA in Western diets [17]. We observed a marked reduc-
tion in the n-6 to n-3 ratio in Fat-1 mice as compared to WT mice.
The n–6 FA, especially AA, is a precursor of prostaglandins (PGs),
leukotrienes and related compounds that influence the synthesis
of eicosanoids which may enhance inflammation and bone loss
[10, 18]. There was a trend towards higher levels of EPA, DPA and
DHA and reduced levels of AA in Fat-1 mice, suggesting that elon-
gation and desaturation were inhibited by the presence of n-3 FA.
Consuming increased amounts of n–3 FA results in a partial
replacement of the AA in cell membranes by EPA and DHA 
[18, 26]. This leads to decreased production of AA-derived 
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Fig. 4 Endogenous n-3 fatty acids decrease LPS-stimulated COX-II pro-
duction. Bone marrow cells from WT and Fat-1 transgenic mice were cul-
tured in the presence of LPS (5 	g/ml). After 24 hrs, cells were collected
and cytosolic proteins were prepared. 100 	g of cytosolic proteins were
analysed for COX-II activity using COX Activity Assay Kit. Each value 
represents the mean � S.E.M. of two independent triplicate cultures.
P-value �0.05 was considered significant by Student’s t-test.
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Fig. 5 Endogenous n-3 fatty acids
decrease LPS-stimulated NF-�B activa-
tion. Bone marrow cells from WT and
Fat-1 transgenic mice were cultured in
the presence of LPS (5 	g/ml). After 
24 hrs, cells were collected and cytoso-
licand nuclear proteins were prepared.
(A) 30 	g of cytosolic proteins were
analysed for phosphorylated I-�B-�
and total I-�B-� level by western blot.
Relative expression of I-�B-�, pI-�B-�
and pI-�B-�/total I-�B-� is shown. The
intensity of the bands was determined
by densitometry. (B) 10 	g of nuclear
proteins were analysed for p65 NF-�B
and p50 NF-�B-DNA binding activity
using TransAM Transcription Factor
Assay kit. Each value represents the
mean � S.E.M. of two independent
triplicate cultures. P-value �0.05 was
considered significant by Student’s 
t-test.

Fig. 6 Endogenous n-3 fatty acids
suppress osteoclast differentiation in
bone marrow (BM) cell culture. BM
cells (1 � 106) from WT and Fat-1
mice were cultured in the presence
of sRANKL and macrophage colony-
stimulating factor (M-CSF). (A)
Formation of TRAP 
 multinucleated
cells in cultures of BM cells isolated
from WT and Fat-1 transgenic mice
in the presence of sRANKL and M-
CSF. (B) TRAP
 multinucleated cells
count in cultures of BM cells isolated
from WT and Fat-1 mice..
*Significantly different from WT con-
trol at P � 0.001 by Student’s t-test.
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pro-inflammatory mediators, i.e. PGE2. Dr. Kang group has
already established that transgenic overexpression of fat-1 gene
lowers PGE2 expression in both cells and tissues by reducing the
availability of AA [41–43]. COX-II is the key enzyme responsible
for the conversion of AA to PGE2 and selective inhibition of COX-II
can attenuate osteoclastogenesis as well as bone loss in inflam-
matory bone diseases [44–47]. It has been further reported that n-3
FA can down-regulate COX-II activity and also lower the produc-
tion of PGE2 in local tissues [41, 48]. We have also found signifi-
cantly reduced COX-II activity in Fat-1 mice. Thus, modification of
membrane FA composition is one of the mechanisms by which n-3
FA may protect osteoporotic BMD loss possibly by reducing the
pro-inflammatory mediators.

We and others earlier have described the inhibition of pro-
inflammatory cytokines production by n-3 FA in cells and tissues
[10, 48–50]. Our present data also show significant reduction of
inflammatory cytokines production in LPS-treated BM cells from
Fat-1 mice. This correlates well with previous findings of inflam-
matory cytokine suppression by n-3 FA [18, 41, 51, 52]. Our pres-
ent data also show a significant increase in the LPS-stimulated
production of IL-10 and IFN-� in BM cells. IL-10 has a critical role
in the in vivo regulation of pro-inflammatory cytokine levels and
has been reported to suppress osteoclastogenesis [53]. Further,
IFN-� is also known to suppress osteoclastogenesis [35]. In addi-
tion, nitric oxide is postulated to play an important role in bone
metabolism, and it is also known that both EPA and DHA enhance
nitric oxide formation [3, 54, 55]. We have also detected higher
level of nitric oxide production in Fat-1 mice. It was reported that
osteoclast formation and bone resorption were inhibited by ele-
vated levels of nitric oxide in vivo and in vitro [56–60]. Moreover,
high nitric oxide levels and nitric oxide generating compounds
inhibit osteoclast formation and bone resorption and prevent bone
loss in severe inflammation or oestrogen-deficient animals [57,
61–64]. Further, iNOS deficiency or pharmacological inhibition of
nitric oxide can accelerate osteoclast formation and bone resorp-
tion in vivo and in vitro, decrease normal bone mass, exacerbate
bone destruction in arthritis or osteoporosis models, interfere with
normal fracture healing and also iNOS knockout mice are known
to exhibit more alveolar bone loss [65–67]. Thus, this might be
another mechanism of the anti-osteoporotic action of n-3 FA.

It is now clearly emerging that n–3 FA might exert their effects
on inflammatory gene expression through direct actions on the
intracellular signalling pathways. Previous studies have shown
that n–3 FA can down-regulate the activity of NF-�B. It has been
reported that EPA prevents TNF-�-induced activation of NF-�B in
cultured pancreatic cells [68]. In another study, EPA was reported
to decrease endotoxin-induced activation of NF-�B and mitogen
activated protein kinases (MAPK) in human monocytes [69–71].
Previously, we have also reported that EPA and DHA alone or in
combination inhibits RANKL-induced NF-�B activation in BM cells
[10]. Others have also showed that fish oil can inhibit LPS-
induced NF-�B activation in a macrophage cell line [72]. These
observations suggest direct effects of n–3 FA on inflammatory
gene expression through the inhibition of NF-�B activation. In this

study, we also observed reduced NF-�B activation in BM cells of
Fat-1 mice compared to that of WT mice. The role of NF-�B in the
pathogenesis of osteoporosis is well documented. Mice null for
NF-�B developed osteopetrosis and contain very few osteoclasts
compared with normal controls [73]. This indicates the essential
role of the NF-�B signalling pathway in osteoclast generation and
activation [74, 75]. Activation of p38 MAPK and cJun N terminal
kinase (JNK) is required for osteoclastogenesis [23]. The p38
MAPK pathway is also known to be involved in the regulation of
bone resorption induced by oestrogen deficiency and selective
inhibitors of this pathway have potential for prevention of bone
loss in post-menopausal osteoporosis [76]. In a very recent study,
we have found decreased activation of p38 MAPK and JNK in n-3
FA-treated BM cells (data not shown). Therefore, the observed
protection of BMD loss due to oestrogen deficiency by increased
n-3 FA and reduced n-6/n-3 FA tissue status is probably due to the
reduced activation of NF-�B, and MAPK signalling pathways.

We previously reported that n-3 FA inhibited TRAP activity and
osteoclast formation in primary BM cells [10]. In our present
study, we found that higher endogenous n-3 FA and lower endoge-
nous n-6/n-3 FA status in BM cells commensurate with lower
RANKL-stimulated BM osteoclastogenesis. Stimulation of osteo-
clast differentiation is one of the mechanisms by which oestrogen
deficiency causes bone loss [27, 28, 32, 77]. Thus, reduction of
osteoclastogenesis might be one of the mechanisms by which n-
3 FA exert its protection against osteoporotic BMD loss.

Our studies on Fat-1 transgenic mice provide compelling evi-
dence for the effectiveness of n-3 FA to be a novel dietary FA to
prevent post-menopausal osteoporosis. Endogenous conversion
of n-6 FA to n-3 FA and maintaining lower ratio of n-6/n-3 FA not
only prevents BMD loss in Ovx mice but also inhibits the inflam-
matory response that underlies the disease. As human beings can-
not synthesize n-3 FA, they can however lower the n-6/n-3 FA ratio
by consuming more n-3 FA, either as supplement or via foods
enriched with n-3 FA, to prevent osteoporotic BMD loss. However,
extensive pharmacological evaluation of this approach is required
to fully determine the effect of long-term use of n-3 FA to prevent
osteoporosis and related inflammatory bone loss. Very recently,
fish oil rich in n-3 FA has been approved by the Food and Drug
Administration (FDA) to use as a prescription drug to treat high
triglyceride level as well as for cardiovascular diseases [78].
Because n-3 FA has many other beneficial effects, such as cardio-
protective effect [79], anti-carcinogenic effect [41], triglyceride
lowering effect [78, 80], as well as protective effect against inflam-
matory diseases [19, 81], supplementation with n-3 FA to prevent
osteoporotic bone loss is a new strategy worth pursuing soon.
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