329 research outputs found

    Pathogenesis of infection by entamoeba histolytica

    Get PDF
    Entamoeba histolytica, a protozoan parasite, is the etiologic agent of amoebiasis in humans. It exists in two forms-the trophozoite which is the active, dividing form, and the cyst which is dormant and can survive for prolonged periods outside the host. In most infected individuals the trophozoites exist as commensals. In a small percentage of infections, the trophozoites become invasive and penetrate the intestinal mucosa, causing ulcers. The trophozoites may reach other parts of the body-mainly liver, where they cause tissue necrosis, leading to lifethreatening abscesses. It is thought that pathogenesis of infection by Entamoeba histolytica is governed at several levels, chief among them are (i) adherence of trophozoite to the target cell, (ii) lysis of target cell, and (iii) phagocytosis of target cell. Several molecules which may be involved in these processes have been identified. A lectin inhibitable by galactose and N-acetyl-D-galactosamine is present on the trophozoite surface. This is implicated in adherence of trophozoite to the target cell. Various amoebic poreforming proteins are known, of which 5kDa protein (amoebapore) has been extensively studied. These can insert into the lipid bilayers of target cells, forming ion-channels. The phagocytic potential of trophozoites is directly linked to virulence as measured in animal models. Factors like association of bacteria with trophozoites also influence virulence. Thus, pathogenesis is determined by multiple factors and a unifying picture taking into account the relative contributions of each factor is sought. Recent technical advances, which includes the development of a transfection system to introduce genes into trophozoites, should help to understand the mechanism of pathogenesis in amoebiasis

    Identification and functional characterization of a novel lysine-rich protein from entamoeba histolytica

    Get PDF
    In an attempt to understand the role of genes with no known function, in the protozoan parasite Entamoeba histolytica, an analysis of the proteome was carried out and a Lysine-Rich protein (KRP) was identified for further study. This protein has a modular structure with four domains and was found to be expressed and localized to the cell surface of E. histolytica trophozoites. The KRP over expressing cells were 80% less virulent as compared to the cells under expressing the gene as determined by the ability of the cells to kill in vitro target cells. The results suggest that KRP may have a role in the cytopathogenesis of the parasite

    Close sequence identity between ribosomal DNA episomes of the non-pathogenic entamoeba dispar and pathogenicEntamoeba histolytica

    Get PDF
    Entamoeba dispar and Entamoeba histolytica are now recognized as two distinct species-the former being nonpathogenic to humans. We had earlier studied the organization of ribosomal RNA genes inE. histolytica. Here we report the analysis of ribosomal RNA genes inE. dispar. The rRNA genes ofE. dispar, like their counterpart inE. histolytica are located on a circular rDNA molecule. From restriction map analysis, the size of E. dispar rDNA circle was estimated to be 24·4 kb. The size was also confirmed by linearizing the circle withBsaHI, and by limited DNAseI digestion. The restriction map of theE. dispar rDNA circle showed close similarity to EhR1, the rDNA circle of E. histolytica strain HM-1:IMSS which has two rDNA units per circle. The various families of short tandem repeats found in the upstream and downstream intergenic spacers (IGS) of EhR1 were also present inE. dispar. Partial sequencing of the cloned fragments ofE. dispar rDNA and comparison with EhR1 revealed only 2·6% to 3·8% sequence divergence in the IGS. The region Tr and the adjoiningPvuI repeats in the IGS of EhR1, which are missing in thoseE. histolytica strains that have one rDNA unit per circle, were present in theE. dispar rDNA circle. Such close similarity in the overall organization and sequence of the IGS of rDNAs of two different species is uncommon. In fact the spacer sequences were only slightly more divergent than the 18S rRNA gene sequence which differs by 1·6% in the two species. The most divergent sequence betweenE. histolytica andE. dispar was the internal transcribed spacer, ITS2. Therefore, it was concluded that probes derived from the ITS1 and ITS 2 sequences would be more reliable and reproducible than probes from the IGS regions used earlier for identifying these species

    Homologous recombination occurs in entamoeba and is enhanced during growth stress and stage conversion

    Get PDF
    Homologous recombination (HR) has not been demonstrated in the parasitic protists Entamoeba histolytica or Entamoeba invadens, as no convenient method is available to measure it. However, HR must exist to ensure genome integrity, and possible genetic exchange, especially during stage conversion from trophozoite to cyst. Here we show the up regulation of mitotic and meiotic HR genes in Entamoeba during serum starvation, and encystation. To directly demonstrate HR we use a simple PCR-based method involving inverted repeats, which gives a reliable read out, as the recombination junctions can be determined by sequencing the amplicons. Using this read out, we demonstrate enhanced HR under growth stress in E. histolytica, and during encystation in E. invadens. We also demonstrate recombination between chromosomal inverted repeats. This is the first experimental demonstration of HR in Entamoeba and will help future investigations into this process, and to explore the possibility of meiosis in Entamoeba

    MGDD: Mycobacterium tuberculosis Genome Divergence Database

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Variation in genomes among different closely-related organisms can be linked to phenotypic differences. A number of mechanisms, such as replication error, repeat expansion and contraction, recombination and transposition can contribute to genomic differences. These processes lead to generation of SNPs, different types of repeat-based and transposons or IS-element-based polymorphisms, inversions and duplications and changes in synteny. A database of all the variations in a group of organisms is not only useful for understanding genotype-phenotype relationship but also in clinical applications. There is no database available at present that provides information about detailed genomic variations among different strains and species of <it>Mycobacterium tuberculosis </it>complex, organisms responsible for human diseases.</p> <p>Description</p> <p>MGDD is a free web-based database that allows quick user friendly search to find different types of genomic variations among a group of fully sequenced organisms belonging to <it>M. tuberculosis </it>complex. The searches are based on data generated by pair wise comparison using a tool that has already been described. Different types of variations that can be searched are SNPs, indels, tandem repeats and divergent regions. The searches can be designed to find specific variations either in a given gene or any given location of the query genome with respect to any other genome currently available.</p> <p>Conclusion</p> <p>Web-based database MGDD can help to find all the possible differences that exists between two strains or species of <it>M. tuberculosis </it>complex. The search tool is very user-friendly and can be used by anyone not familiar with computational methods and will be useful to both clinicians and researchers working on tuberculosis and other Mycobacterial diseases.</p

    Identification of EhTIF-IA: the putative E. histolytica orthologue of the human ribosomal RNA transcription initiation factor-IA

    Get PDF
    Initiation of rDNA transcription requires the assembly of a specific multi-protein complex at the rDNA promoter containing the RNA Pol I with auxiliary factors. One of these factors is known as Rrn3P in yeast and Transcription Initiation Factor IA (TIF-IA) in mammals. Rrn3p/TIF-IA serves as a bridge between RNA Pol I and the pre-initiation complex at the promoter. It is phosphorylated at multiple sites and is involved in regulation of rDNA transcription in a growth-dependent manner. In the early branching parasitic protist Entamoeba histolytica, the rRNA genes are present exclusively on circular extra chromosomal plasmids. The protein factors involved in regulation of rDNA transcription in E. histolytica are not known. We have identified the E. histolytica equivalent of TIF-1A (EhTIF-IA) by homology search within the database and was further cloned and expressed. Immuno-localization studies showed that EhTIF-IA co-localized partially with fibrillarin in the peripherally localized nucleolus. EhTIF-IA was shown to interact with the RNA Pol I-specific subunit RPA12 both in vivo and in vitro. Mass spectroscopy data identified RNA Pol I-specific subunits and other nucleolar proteins to be the interacting partners of EhTIF-IA. Our study demonstrates for the first time a conserved putative RNA Pol I transcription factor TIF-IA in E. histolytica

    The calmodulin-like calcium binding protein EhCaBP3 of Entamoeba histolytica regulates phagocytosis and is involved in actin dynamics

    Get PDF
    Phagocytosis is required for proliferation and pathogenesis of Entamoeba histolytica and erythrophagocytosis is considered to be a marker of invasive amoebiasis. Ca2+ has been found to play a central role in the process of phagocytosis. However, the molecular mechanisms and the signalling mediated by Ca2+ still remain largely unknown. Here we show that Calmodulin-like calcium binding protein EhCaBP3 of E. histolytica is directly involved in disease pathomechanism by its capacity to participate in cytoskeleton dynamics and scission machinery during erythrophagocytosis. Using imaging techniques EhCaBP3 was found in phagocytic cups and newly formed phagosomes along with actin and myosin IB. In vitro studies confirmed that EhCaBP3 directly binds actin, and affected both its polymerization and bundling activity. Moreover, it also binds myosin 1B in the presence of Ca2+. In cells where EhCaBP3 expression was down regulated by antisense RNA, the level of RBC uptake was reduced, myosin IB was found to be absent at the site of pseudopod cup closure and the time taken for phagocytosis increased, suggesting that EhCaBP3 along with myosin 1B mediate the closure of phagocytic cups. Experiments with EhCaBP3 mutant defective in Ca2+ -binding showed that Ca2+ binding is required for phagosome formation. Liposome binding assay revealed that EhCaBP3 recruitment and enrichment to membrane is independent of any cellular protein as it binds directly to phosphatidylserine. Taken together, our results suggest a novel pathway mediating phagocytosis in E. histolytica, and an unusual mechanism of modulation of cytoskeleton dynamics by two calcium binding proteins, EhCaBP1 and EhCaBP3 with mostly non-overlapping functions

    Molecular basis of pathogenesis in amoebiasis

    Get PDF
    Amoebiasis is one of the major public health problems in developing countries. In spite of the availability of an effective drug and absence of overt drug resistance, the disease is still prevalent among large population and spread over a number of countries. It is caused by the protist parasite Entamoeba histolytica that essentially infects humans, though other species that infect a few animals have been reported. A number of molecular techniques have recently been developed. These have helped in understanding biological processes in E. histolytica and in the identification of key molecules that are involved in amoebic virulence and invasion. Moreover, developments in the area of disease and invasion models have allowed understanding of these processes at molecular level and circumvented lack of a good animal model of amoebiasis. All these knowledge will help us to design better therapeutics and allow us to control this important disease

    Analysis of IS6110 insertion sites provide a glimpse into genome evolution of Mycobacterium tuberculosis

    Get PDF
    Insertion sequence (IS) 6110 is found at multiple sites in the Mycobacterium tuberculosis genome and displays a high degree of polymorphism with respect to copy number and insertion sites. Therefore, IS6110 is considered to be a useful molecular marker for diagnosis and strain typing of M. tuberculosis. Generally IS6110 elements are identified using experimental methods, useful for analysis of a limited number of isolates. Since short read genome sequences generated using next-generation sequencing (NGS) platforms are available for a large number of isolates, a computational pipeline for identification of IS6110 elements from these datasets was developed. This study shows results from analysis of NGS data of 1377 M. tuberculosis isolates. These isolates represent all seven major global lineages of M. tuberculosis. Lineage specific copy number patterns and preferential insertion regions were observed. Intra-lineage differences were further analyzed for identifying spoligotype specific variations. Copy number distribution and preferential locations of IS6110 in different lineages imply independent evolution of IS6110, governed mainly through ancestral insertion, fitness (gene truncation, promoter activity) and recombinational loss of some copies. A phylogenetic tree based on IS6110 insertion data of different isolates was constructed in order to understand genome level variations of different markers across different lineages

    Next-generation anchor based phylogeny (NexABP): constructing phylogeny from next-generation sequencing data

    Get PDF
    Whole genome sequences are ideally suited for deriving evolutionary relationship among organisms. With the availability of Next Generation sequencing (NGS) datasets in an unprecedented scale, it will be highly desirable if phylogenetic analysis can be carried out using short read NGS data. We described here an anchor based approach NexABP for phylogenetic construction of closely related strains/isolates from NGS data. This approach can be used even in the absence of a fully assembled reference genome and works by reducing the complexity of the datasets without compromising results. NexABP was used for constructing phylogeny of different strains of some of the common pathogens, such as Mycobacterium tuberculosis, Vibrio cholera and Escherichia coli. In addition to classification into distinct lineages, NexABP could resolve inner branches and also allow statistical testing using bootstrap analysis. We believe that there are some clear advantages of using NexABP based phylogenetic analysis as compared to other methods
    • …
    corecore