13,307 research outputs found
Pulsar Scintillation and the Local Bubble
We present here the results from an extensive scintillation study of twenty
pulsars in the dispersion measure (DM) range 3 - 35 pc cm^-3 caried out using
the Ooty Radio Telescope (ORT) at 327 MHz, to investigate the distribution of
ionized material in the local interstellar medium. Observations were made
during the period January 1993 to August 1995, in which the dynamic
scintillation spectra of these pulsars were regularly monitored over 10 - 90
epochs spanning 100 days. Reliable and accurate estimates of strengths of
scattering have been deduced from the scintillation parameters averaged out for
their long-term fluctuations arising from refractive scintillation (RISS)
effects. Our analysis reveals several anomalies in the scattering strength,
which suggest tht the distribution of scattering material in the Solar
neighborhood is not uniform.
We have modelled these anomalous scattering effects in terms of
inhomogeneities in the distribution of electron dnsity fluctuations in the
local interstellar medium (LISM). Our model suggests the presence of a low
density bubble surrounded by a shell of much higher density fluctuations. We
are able to put constraints on geometrical and scattering properties of such a
structure, and find it to be morphologically similar to the Local Bubble known
from other studies.Comment: 35 pages, 12 figure
Long-Term Scintillation Studies of Pulsars: III. Testing Theoretical Models of Refractive Scintillation
Refractive interstellar scintillation (RISS) is thought to be the cause
behind a variety of phenomena seen at radio wavelengths in pulsars and compact
radio sources. Though there is substantial observational data to support
several consequences of it, the quantitative predictions from theories have not
been thoroughly tested. In this paper, data from our long-term scintillation
study of 18 pulsars are used to test the predictions. The fluctuations of
decorrelation bandwidth (), scintillation time scale () and flux
density (F) are examined for their cross-correlations and compared with the
predictions. The theory predicts a strong correlation between and
, and strong anti-correlations between and F, and and
F. For 5 pulsars, we see a reasonable agreement. There is considerable
difficulty in reconciling the results for the rest of the pulsars. Our analysis
shows the underlying noise sources can sometimes reduce the correlation, but
cannot cause an absence of correlation. It is also unlikely that the poor flux
correlations arise from a hitherto unrecognized intrinsic flux variations. For
PSR B0834+06, which shows anomalous behaviour of persistent drift slopes,
positive correlation is found between and the drift-corrected .
Many pulsars show an anti-correlation between and the drift slope, and
this is in accordance with the simple models of RISS. The detections of
correlated variations of observables and a reasonable agreement between the
predicted and measured correlations for some pulsars confirm RISS as the
primary cause of the observed fluctuations. However, the complexity seen with
the detailed results suggests the necessity of more comprehensive theoretical
treatments for describing refractive fluctuations and their correlations.Comment: 27 pages, 6 Figures, 6 Tables. Accepted for publication in The
Astrophysical Journa
A Proposal to Localize Fermi GBM GRBs Through Coordinated Scanning of the GBM Error Circle via Optical Telescopes
We investigate the feasibility of implementing a system that will coordinate
ground-based optical telescopes to cover the Fermi GBM Error Circle (EC). The
aim of the system is to localize GBM detected GRBs and facilitate
multi-wavelength follow-up from space and ground. This system will optimize the
observing locations in the GBM EC based on individual telescope location, Field
of View (FoV) and sensitivity. The proposed system will coordinate GBM EC
scanning by professional as well as amateur astronomers around the world. The
results of a Monte Carlo simulation to investigate the feasibility of the
project are presented.Comment: 2011 Fermi Symposium proceedings - eConf C11050
A CLEAN-based Method for Deconvolving Interstellar Pulse Broadening from Radio Pulses
Multipath propagation in the interstellar medium distorts radio pulses, an
effect predominant for distant pulsars observed at low frequencies. Typically,
broadened pulses are analyzed to determine the amount of propagation-induced
pulse broadening, but with little interest in determining the undistorted pulse
shapes. In this paper we develop and apply a method that recovers both the
intrinsic pulse shape and the pulse broadening function that describes the
scattering of an impulse. The method resembles the CLEAN algorithm used in
synthesis imaging applications, although we search for the best pulse
broadening function, and perform a true deconvolution to recover intrinsic
pulse structre. As figures of merit to optimize the deconvolution, we use the
positivity and symmetry of the deconvolved result along with the mean square
residual and the number of points below a given threshold. Our method makes no
prior assumptions about the intrinsic pulse shape and can be used for a range
of scattering functions for the interstellar medium. It can therefore be
applied to a wider variety of measured pulse shapes and degrees of scattering
than the previous approaches. We apply the technique to both simulated data and
data from Arecibo observations.Comment: 9 pages, 6 figures, Accepted for publication in the Astrophysical
Journa
Colossal electroresistance in ferromagnetic insulating state of single crystal NdPbMnO
Colossal electroresistance (CER) has been observed in the ferromagnetic
insulating (FMI) state of a manganite. Notably, the CER in the FMI state occurs
in the absence of magnetoresistance (MR). Measurements of electroresistance
(ER) and current induced resistivity switching have been performed in the
ferromagnetic insulating state of a single crystal manganite of composition
NdPbMnO (NPMO30). The sample has a paramagnetic to
ferromagnetic (Curie) transition temperature, Tc = 150 K and the ferromagnetic
insulating state is realized for temperatures, T <~ 130 K. The colossal
electroresistance, arising from a strongly nonlinear dependence of resistivity
() on current density (j), attains a large value () in the
ferromagnetic insulating state. The severity of this nonlinear behavior of
resistivity at high current densities is progressively enhanced with decreasing
temperature, resulting ultimately, in a regime of negative differential
resistivity (NDR, d/dj < 0) for temperatures <~ 25 K. Concomitant with
the build-up of the ER however, is a collapse of the MR to a small value (<
20%) even in magnetic field, H = 7 T. This demonstrates that the mechanisms
that give rise to ER and MR are effectively decoupled in the ferromagnetic
insulating phase of manganites. We establish that, the behavior of
ferromagnetic insulating phase is distinct from the ferromagnetic metallic
(FMM) phase as well as the charge ordered insulating (COI) phase, which are the
two commonly realized ground state phases of manganites.Comment: 24 pages (RevTeX4 preprint), 8 figures, submitted to PR
Transverse instability of the antiproton beam in the Recycler Ring
The brightness of the antiproton beam in Fermilab's 8 GeV Recycler ring is
limited by a transverse instability. This instability has occurred during the
extraction process to the Tevatron for large stacks of antiprotons even with
dampers in operation. This paper describes observed features of the
instability, introduces the threshold phase density to characterize the beam
stability, and finds the results to be in agreement with a resistive wall
instability model. Effective exclusion of the longitudinal tails from Landau
damping by decreasing the depth of the RF potential well is observed to lower
the threshold density by up to a factor of two.Comment: 3 pp. Particle Accelerator, 24th Conference (PAC'11) 2011. 28 Mar - 1
Apr 2011. New York, US
- …