16 research outputs found

    deconSTRUCT: general purpose protein database search on the substructure level

    Get PDF
    deconSTRUCT webserver offers an interface to a protein database search engine, usable for a general purpose detection of similar protein (sub)structures. Initially, it deconstructs the query structure into its secondary structure elements (SSEs) and reassembles the match to the target by requiring a (tunable) degree of similarity in the direction and sequential order of SSEs. Hierarchical organization and judicious use of the information about protein structure enables deconSTRUCT to achieve the sensitivity and specificity of the established search engines at orders of magnitude increased speed, without tying up irretrievably the substructure information in the form of a hash. In a post-processing step, a match on the level of the backbone atoms is constructed. The results presented to the user consist of the list of the matched SSEs, the transformation matrix for rigid superposition of the structures and several ways of visualization, both downloadable and implemented as a web-browser plug-in. The server is available at http://epsf.bmad.bii.a-star.edu.sg/struct_server.html

    Metabolic activation of CaMKII by coenzyme A

    Get PDF
    Active metabolism regulates oocyte cell death via calcium/calmodulin-dependent protein kinase II (CaMKII)-mediated phosphorylation of caspase-2, but the link between metabolic activity and CaMKII is poorly understood. Here we identify coenzyme A (CoA) as the key metabolic signal that inhibits Xenopus laevis oocyte apoptosis by directly activating CaMKII. We found that CoA directly binds to the CaMKII regulatory domain in the absence of Ca(2+) to activate CaMKII in a calmodulin-dependent manner. Furthermore, we show that CoA inhibits apoptosis not only in X. laevis oocytes but also in Murine oocytes. These findings uncover a direct mechanism of CaMKII regulation by metabolism and further highlight the importance of metabolism in preserving oocyte viability

    Urokinase Inhibitor Design Based on Pharmacophore Model Derived from Diverse Classes of Inhibitors

    No full text
    It is widely documented that the progression of cancer cell invasion and metastasis is hinged on the ability of tumor cells to produce and recruit proteolytic enzymes. Among the diverse proteolytic enzyme systems produced by human cancers

    Identification of Mtb GlmU Uridyltransferase Domain Inhibitors by Ligand-Based and Structure-Based Drug Design Approaches

    No full text
    Targeting enzymes that play a role in the biosynthesis of the bacterial cell wall has long been a strategy for antibacterial discovery. In particular, the cell wall of Mycobacterium tuberculosis (Mtb) is a complex of three layers, one of which is Peptidoglycan, an essential component providing rigidity and strength. UDP-GlcNAc, a precursor for the synthesis of peptidoglycan, is formed by GlmU, a bi-functional enzyme. Inhibiting GlmU Uridyltransferase activity has been proven to be an effective anti-bacterial, but its similarity with human enzymes has been a deterrent to drug development. To develop Mtb selective hits, the Mtb GlmU substrate binding pocket was compared with structurally similar human enzymes to identify selectivity determining factors. Substrate binding pockets and conformational changes upon substrate binding were analyzed and MD simulations with substrates were performed to quantify crucial interactions to develop critical pharmacophore features. Thereafter, two strategies were applied to propose potent and selective bacterial GlmU Uridyltransferase domain inhibitors: (i) optimization of existing inhibitors, and (ii) identification by virtual screening. The binding modes of hits identified from virtual screening and ligand growing approaches were evaluated further for their ability to retain stable contacts within the pocket during 20 ns MD simulations. Hits that are predicted to be more potent than existing inhibitors and selective against human homologues could be of great interest for rejuvenating drug discovery efforts towards targeting the Mtb cell wall for antibacterial discovery

    Determinants, discriminants, conserved residues - a heuristic approach to detection of functional divergence in protein families

    No full text
    In this work, belonging to the field of comparative analysis of protein sequences, we focus on detection of functional specialization on the residue level. As the input, we take a set of sequences divided into groups of orthologues, each group known to be responsible for a different function. This provides two independent pieces of information: within group conservation and overlap in amino acid type across groups. We build our discussion around the set of scoring functions that keep the two separated and the source of the signal easy to trace back to its source. We propose a heuristic description of functional divergence that includes residue type exchangeability, both in the conservation and in the overlap measure, and does not make any assumptions on the rate of evolution in the groups other than the one under consideration. Residue types acceptable at a certain position within an orthologous group are described as a distribution which evolves in time, starting from a single ancestral type, and is subject to constraints that can be inferred only indirectly. To estimate the strength of the constraints, we compare the observed degrees of conservation and overlap with those expected in the hypothetical case of a freely evolving distribution. Our description matches the experiment well, but we also conclude that any attempt to capture the evolutionary behavior of specificity determining residues in terms of a scalar function will be tentative, because no single model can cover the variety of evolutionary behavior such residues exhibit. Especially, models expecting the same type of evolutionary behavior across functionally divergent groups tend to miss a portion of information otherwise retrievable by the conservation and overlap measures they use

    Ligand Binding Mode Prediction by Docking: Mdm2/Mdmx Inhibitors as a Case Study

    No full text
    The p53-binding domains of Mdm2 and Mdmx, two negative regulators of the tumor suppressor p53, are validated targets for cancer therapeutics, but correct binding poses of some proven inhibitors, particularly the nutlins, have been difficult to obtain with standard docking procedures. Virtual screening pipelines typically draw from a database of compounds represented with 1D or 2D structural information from which one or more 3D conformations must be generated. These conformations are then passed to a docking algorithm that searches for optimal binding poses on the target protein. This work tests alternative pipelines using several commonly used conformation generation programs (LigPrep, ConfGen, MacroModel, and Corina/Rotate) and docking programs (GOLD, Glide, MOE-dock, and AutoDock Vina) for their ability to reproduce known poses for a series of Mdmx and/or Mdm2 inhibitors, including several nutlins. Most combinations of these programs using default settings fail to find correct poses for the nutlins but succeed for all other compounds. Docking success for the nutlin class requires either computationally intensive conformational exploration or an ā€œanchoringā€ procedure that incorporates knowledge of the orientation of the central imidazoline ring

    Cube-DB: detection of functional divergence in human protein families

    Get PDF
    Cube-DB is a database of pre-evaluated results for detection of functional divergence in human/vertebrate protein families. The analysis is organized around the nomenclature associated with the human proteins, but based on all currently available vertebrate genomes. Using full genomes enables us, through a mutual-best-hit strategy, to construct comparable taxonomical samples for all paralogues under consideration. Functional specialization is scored on the residue level according to two models of behavior after divergence: heterotachy and homotachy. In the first case, the positions on the protein sequence are scored highly if they are conserved in the reference group of orthologs, and overlap poorly with the residue type choice in the paralogs groups (such positions will also be termed functional determinants). The second model additionally requires conservation within each group of paralogs (functional discriminants). The scoring functions are phylogeny independent, but sensitive to the residue type similarity. The results are presented as a table of per-residue scores, and mapped onto related structure (when available) via browser-embedded visualization tool. They can also be downloaded as a spreadsheet table, and sessions for two additional molecular visualization tools. The database interface is available at http://epsf.bmad.bii.a-star.edu.sg/cube/db/html/home.html
    corecore