2,572 research outputs found

    Ratcheting up ambition on climate policy

    Get PDF
    The historic Paris Agreement aims to constrain the peak increase in global mean temperature to 1.5 °C, or at least well below 2 °C. Every country has committed to device their own “nationally determined contributions” towards this target. These contributions are only proscribed for the coming 10-15 years with a regular reassessment of them against the global target. Here we use a global climate-economy model to explore consequences of differing levels of ambition during these reanalysis. We find that without substantially increased ambition the probability of avoiding 2 °C of warming is marginal. We present several plausible future trajectories that significantly increase the probability of avoiding 2 °C, but are unable to keep global temperatures below 1.5 °C. We advocate countries engage in the reassessment process soon and with high ambitions as catastrophic climate change can effectively be ruled out by such actions

    What will anisotropies in the clustering pattern in redshifted 21 cm maps tell us?

    Full text link
    The clustering pattern in high redshift HI maps is expected to be anisotropic due to two distinct reasons, the Alcock-Paczynski effect and the peculiar velocities, both of which are sensitive to the cosmological parameters. The signal is also expected to be sensitive to the details of the HI distribution at the epoch when the radiation originated. We use simple models for the HI distribution at the epoch of reionizaation and the post-reionization era to investigate exactly what we hope to learn from future observations of the anisotropy pattern in HI maps. We find that such observations will probably tell us more about the HI distribution than about the background cosmological model. Assuming that reionization can be described by spherical, ionized bubbles all of the same size with their centers possibly being biased with respect to the dark matter, we find that the anisotropy pattern at small angles is expected to have a bump at the characteristic angular size of the individual bubbles whereas the large scale anisotropy pattern will reflect the size and the bias of the bubbles. The anisotropy also depends on the background cosmological parameters, but the dependence is much weaker. Under the assumption that the HI in the post-reionization era traces the dark matter with a possible bias, we find that changing the bias and changing the background cosmology has similar effects on the anisotropy pattern. Combining observations of the anisotropy with independent estimates of the bias, possibly from the bi-spectrum, may allow these observations to constrain cosmological parameters.Comment: Minor changes, Accepted to MNRA

    Color Partition Identities Arising from Ramanujan's Theta-Functions

    Get PDF
    We establish several partition identities with distinct colors that arise from Ramanujan’s theta-function identities and formulas for multipliers in the theory of modular equations. Also, we deduce few partition congruences as a corollary of some partition identities

    Evidence for Filamentarity in the Las Campanas Redshift Survey

    Get PDF
    We apply Shapefinders, statistical measures of `shape' constructed from two dimensional partial Minkowski functionals, to study the degree of filamentarity in the Las Campanas Redshift Survey (LCRS). In two dimensions, three Minkowski functionals characterise the morphology of an object, they are: its perimeter (L), area (S), and genus. Out of L and S a single dimensionless Shapefinder Statistic, F can be constructed (0 <=F <=1). F acquires extreme values on a circle (F = 0) and a filament (F = 1). Using F, we quantify the extent of filamentarity in the LCRS by comparing our results with a Poisson distribution with similar geometrical properties and having the same selection function as the survey. Our results unambiguously demonstrate that the LCRS displays a high degree of filamentarity both in the Northern and Southern galactic sections a result that is in general agreement with the visual appearance of the catalogue. It is well known that gravitational clustering from Gaussian initial conditions gives rise to the development of non-Gaussianity reflected in the formation of a network-like filamentary structure on supercluster scales. Consequently the fact that the smoothed LCRS catalogue shows properties consistent with those of a Gaussian random field (Colley 1997) whereas the unsmoothed catalogue demonstrates the presence of filamentarity lends strong support to the conjecture that the large scale clustering of galaxies is driven by gravitational instability.Comment: Accepted for publication in Ap

    Polarised foreground removal at low radio frequencies using rotation measure synthesis: uncovering the signature of hydrogen reionisation

    Full text link
    Measurement of redshifted 21-cm emission from neutral hydrogen promises to be the most effective method for studying the reionisation history of hydrogen and, indirectly, the first galaxies. These studies will be limited not by raw sensitivity to the signal, but rather, by bright foreground radiation from Galactic and extragalactic radio sources and the Galactic continuum. In addition, leakage due to gain errors and non-ideal feeds conspire to further contaminate low-frequency radio obsevations. This leakage leads to a portion of the complex linear polarisation signal finding its way into Stokes I, and inhibits the detection of the non-polarised cosmological signal from the epoch of reionisation. In this work, we show that rotation measure synthesis can be used to recover the signature of cosmic hydrogen reionisation in the presence of contamination by polarised foregrounds. To achieve this, we apply the rotation measure synthesis technique to the Stokes I component of a synthetic data cube containing Galactic foreground emission, the effect of instrumental polarisation leakage, and redshifted 21-cm emission by neutral hydrogen from the epoch of reionisation. This produces an effective Stokes I Faraday dispersion function for each line of sight, from which instrumental polarisation leakage can be fitted and subtracted. Our results show that it is possible to recover the signature of reionisation in its late stages (z ~ 7) by way of the 21-cm power spectrum, as well as through tomographic imaging of ionised cavities in the intergalactic medium.Comment: 22 pages including 11 figures. Minor revisions following referee's report. MNRAS, in pres
    • …
    corecore