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Abstract We establish several partition identities with distinct colors that arise from
Ramanujan’s theta-function identities and formulas for multipliers in the theory of modu-
lar equations. Also, we deduce few partition congruences as a corollary of some partition
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Keywords Color partition identities - Theta—functions - Partition congruences -
Modular equations

Mathematics Subject Classification (2010) 11P83 - 05A17

1 Introduction

In [12], H. M. Farkas and I. Kra observed that certain theta constant identities can be inter-
preted into partition identities. The following theorem is the most elegant of their three
partition theorems.

Theorem 1.1 Let S denote the set consisting of one copy of the positive integers and one
additional copy of those positive integers that are multiples of 7. Then for each positive
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634 M. S. Mahadeva Naika et al.

integer k, the number of partitions of 2k into even elements of S is equal to the number of
partitions of 2k + 1 into odd elements of S.

The generating function identity of Theorem 1.1 is
(=4:4M)o0(=q": 4o — (@5 4P)o0(@: 4o = 20(=4% 400 (—q'* Moo, (1L1)

where (a; @)oo = [ e o(1 — ag™).

In [13], M. D. Hirschhorn gave a simple proof of Theorem 1.1. The referee of [13]
observed that (1.1) is equivalent to a modular equation of degree 7 in Ramanujan Notebooks.
B.C. Berndt [9] showed that modular equations of degree 5, 11, and 23 due to H. Schroter
[19], Russell [16], and Ramanujan [15] also yield elegant partition identity similar to (1.1).

N. D. Baruah and Berndt [2, 3] found that there are many further modular equations
and theta function identities of Ramanujan and Schréter-type, which yield elegant partition
identities.

S. O. Warnaar [20] established a generalization of Theorem 1.1. In [14], S. Kim gives a
bijective proof of Warnaar’s generalization, which naturally gives a bijective proof of par-
tition theorems due to Farkas and Kra [12]. C. Sandon and F. Zanella [17] extended Kim’s
ideas and consequently found a bijective proof of partition identities arising from modular
equations of degree 5 and 11. In [18], they further found several new and non-trivial colored
partition identities and conjectured 29 more identities. Berndt and R. R. Zhuo [10] proved
three of the Sandon and Zanella conjectures using Ramanujan formulas of multipliers and
the same authors proved all the remaining conjectures in [11]. In [4], Baruah and B. Bourah
have also established 17 of those conjectures and proved analogues of all the remaining 12
using the theory of Ramanujan’s theta function.

Baruah and K. K. Ojah have studied the partition function pj.gmi(n) in [S] which is
defined by

1

o0
Prolgmi(n)q" = ——— . (1.2)
rg [e'd™] (@ 995 (q%; qm

They have proved some analogues of Ramanujan’s partition identities and also deduced sev-
eral partition congruences.
In this paper, we present several new partition-theoretical interpretation that arise from
existing Ramanujan’s theta function identities.

We end this section by defining a modular equation in brief.

The complete elliptic integral of the first kind is defined for 0 < k < 1 by

3 d
K = K(k) ::/27¢
0 /1 —k2sin®¢
b 11
= —F ,,,;1;k2 .
2’ 1<2 2 )

The number  is called the modulus of K and k’ := +/1 — k? is called the complementary
modulus and ; Fj (% %; 1; k2) denotes the ordinary hypergeometric function. Let K, K’,
L, and L’ denote the complete elliptic integrals of the first kind associated with the moduli
k, k', 1 and !’ := ~/1 — [2, respectively. Suppose that the equality

K L

n— T (1.3)
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Color Partition Identities Arising from Ramanujan’s Theta-Functions 635

holds for some positive integer n. Then a modular equation of degree n is a relation between
the moduli & and / which is induced by (1.3). Following Ramanujan, set @ = k> and g = [%.
Then we say B is of degree n over «.

If
K/

= —-T— |, 1.4
() "

then from the theory of elliptic function [[6]. p. 101, Entry 6], we have
2= oF (1 L e = (1.5)

‘/"I—le,z,, =:Z. .

If we set z,, := ¢2(¢"), then the multiplier m of degree n is defined by

mo= 2L (1.6)
Zn

2 Definitions and Preliminary Results

Throughout this paper, we let |¢| < 1. We use the standard notation

(ar, a2, ..., ar; @)oo = (a1; @)oo (a2; @)oo - - - (Ak; @)oo,
and define
@400 =" "¢ )0
Following Ramanujan, we define
ad 2
@) =g = Y 4" =495 ) @.1)
n=—o0
00 2. .2
V@) = flg.gh) = gt = e 22)
= (43 q%)o0
o0
@) = f—q. =g =Y (~1)"¢" 2 = (4 9o, (2.3)
n=—0oo
which are special cases of Ramanujan’s general theta function [6]
o0
fla,b)y:= Y "Ry ap <1, (2.4)
n=—00
Using the Jacobi’s famous triple product identity, the identity (2.4) reduces to
fla,b) = (=a; ab)oo(—b; ab) oo (ab; ab)oo. (2.5)
After Ramanujan, we also define
x(@) = (=¢; ¢")oo- (2.6)
We frequently use Euler’s famous identity [1]
1/(g5 Moo = (=45 D)o @7

i.e., the number of partitions of a positive integer n into odd parts is identical to the number
of partitions of n into distinct parts.
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636 M. S. Mahadeva Naika et al.

Lemma 2.1 ([6, Entry 29, p. 45]) If ab = cd, we have

fla,b)f(c,d)+ f(—a, =b)f(—c,—d) = 2f(ac, bd) f(ad, bc), (2.8)
fla.b)f(c.d) — f(—a,—b) f(—c, —d) = 2af (b/c,ac*d) f(b/d,acd?). (2.9)

Lemma 2.2 ([7, Entry 14, p.149]) We have

fla.b)f@, b’ = f(=a,=b) f(=a’, =) = 2af (b/a,a®)Y (a’h’), (2.10)
f(a,b)f@’b,ab®) — f(—a, —b) f(—a’b, —ab®) = 2af(b/a,a*b*)y(ab). (2.11)

3 Partitions and Theta Constant Identities of Degree 3 or 9

Theorem 3.1 Let S denote the set consisting of three copies of odd positive integers, each
of which is colored by one of three colors, and let one of which is not a multiple of 3. Let
A(N) denote the number of partitions of N into elements of S, let B(N) denote the number
of partitions of 2N into parts congruent to £2, 4 or 6 (mod 12) with parts congruent to
+4 or 6 (mod 12) having one additional color and let C (N) denote the number of partitions
of 2N — 2 into even positive integers that are not multiples of 36 with parts congruent to
+2, +£10, 14 or 18 (mod 36) having one additional color. Then,

(i) forN >1, A2N)=3C(N) and
(i) for N >0, A2N +1) =3 B(N).

Proof From [7, p. 202, Entry 50(i)]
3 _9
x(q)_l_‘_3 v(=q")

= . 3.1
X@ o) G-b
Replacing g by —¢q in (3.1), we obtain
3 9
X (—q) Y(q”)
=1-3 ) 3.2
x(—=¢3) V@ G2
Adding (3.1) and (3.2), we find that
3 3 9 9
x (@) | x(—=q) v(—q”) ¥(q)
+ =2+3 — . 3.3
1@ =gy T ( e Ty ) G-

Setting a = g and b = ¢° in (2.10) and then transforming the resulting identity to q-
products, we obtain

(=440 _ @147 _ . (4% 4o
(—2%:4®00 (%40 (=4% 4%
Employing (2.2), (2.6), (2.7), and (3.4) in (3.3), we obtain the equality

(—q"8; ¢"®)2,. (3.4)

(—q:9%)3 | (@:9)% ) (7% %) o0
=246 35
(=4% 490 (@740 T @ o @, %, %%, 1% ) G-
Now, subtracting (3.2) from (3.1), we find that
3 3 9 9
x'(q)  x’(—q) Yv(—q")  ¥(@q)
- =3 + . 3.6
X@ 1) (w(—m V@ ) G0
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Color Partition Identities Arising from Ramanujan’s Theta-Functions 637

We recall from [6, p. 345, Entry 1] that
L) V@
x(=¢%) ¥(q%)
Replacing ¢ by —q in (3.7), and then adding the resulting identity with (3.7), we find that
@) O Yo | Y@
x@)  x(=¢>  v(=¢") ¥
Settinga = ¢, b = ¢, and ¢ = d = —¢g° in (2.8) and then writing the resulting identity in
g-products, we have

3.7

(3.8)

(—0:4D% | @D (% g2 (=q% "2
3. ,6\3 363 = 2 6. ;612 : 3.9
(=4°:4")%  (@°:4°)% (@% 9°)%
Using (3.9) in (3.8) and then substituting the resulting identity in (3.6), we obtain an identity
equivalent to

4% @a% _ !

(—4% 4%  (@*q% (@%*. 4%, 4%+, 4%, 4% ¢'?) o
From (3.5) and (3.10), we deduce the partition identity claimed in Theorem 3.1(i) and (ii),
respectively. O

(3.10)

Example 1 Let N =2. Then A(4) =6 and C(2) =2, we have the representation
3, +1, =3, +1,=3,+1, =3,+1, =3, + 1, =3, + 15, 2r = 20.
Also, A(5) =9 and B(2) = 3, and

50 =5 =5%=3+L+1, =3+l +1l,=3 + L+ 1, =3,+1,+1,
3o+1p+1,=3,+1,+1,,
2r +2r =4 =4p.

Corollary 3.1.1 Let pjj33-1)(n) be the number of three colored partitions of n with one of
the colors is not multiples of 3. We have
I AR A E N R 0 P A A0 S R I

o
P31 (2n)g" = +3q . (3.11)
g e (@ 9% (4% 4% (@ 9%(q% 49%(4% 470

Proof We have

o0 3.3

(g7597)
E P31 (m)g" = qiq;o (3.12)
= (43 9z

Thus

.~ g2 — @5495@% 4% | e | @)% 313
ZP[133—1]( nq- = @2 a0 (¢%: ¢ 12) (—4%: ¢% @ a9 [ (3.13)
n—0 9°:47)00(q 759 )0 979" )oo q;9°)oo

Using (3.5) in (3.13) and then replacing ¢ with g, we obtain (3.11). O

g
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638 M. S. Mahadeva Naika et al.

Corollary 3.1.2 Forr > 1, we have

pp133-17(6n +4) = 0 (mod 6), (3.14)
Pp133-17(6n + 6) = 0 (mod 6), (3.15)
pr33-17(6-4"n + 14471 = 0 (mod 6), (3.16)
pi33-1)(12-4"n 426 - 4~1) = 0 (mod 6), (3.17)
Pr33-17(6-4"n +20-471) =0 (mod 6). (3.18)

Proof For any positive integer k and prime number ¢, it is easy to see that

(4" 4% = (@' ¢")oo (mod 1). (3.19)

Employing (3.19), we deduce that
4% 9934 475 q(qz;qz)io(q3;q3)§o(418;q18)§0 143 4’ 4%’ (tmod 6).
(@ 08 (4% 4% o0 (@: D8 (4% 4%2.(4°: 7)o 7% 9> 320)

@3.
Using (3.20) in (3.11), we obtain
o 9\3

> pus-y@n+2)q" = ((q 4 )) (mod 6). (321

n=0

Extracting the terms involving q3"+1 and q3”+2 in (3.21), we obtain (3.14) and (3.15),
respectively. Now equating coefficients of ¢>" on both sides of (3.21), we have

q*q*)?

Z P33 (6n +2)¢" = 3= (mod 6). (3.22)
= (4:9)
It follows from (1.2) and (3.22) that
P33-11(6n +2) = 3 pji3-3;(n) (mod 6). (3.23)
In [21], E. X. W. Xia and O. X. M. Yao have proved that, for r > 1
. T4
Priiz-3 4"n + f =0 (mod 2), (324)
L 134l
p[113—3] 2-4"'n+ f =0 (mOd 2), (325)
. 10-471 -1
p[11373] 4"'n+ f = 0. (326)
From (3.23) to (3.26), we obtain (3.16) to (3.18). O
Corollary 3.1.3 We have
Pp33-11(12n +10) = 0 (mod 18), (3.27)
P33-11(12n +6) =0 (mod 13), (3.28)
Ppi33-1(24n +14) = 0 (mod 18), (3.29)
Pr33-11(48n +26) = 0 (mod 18). (3.30)

@ Springer i ms
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Proof From [5, Corollary 4.18, p. 405], we have
Ppi33-1(4n +2) = 0 (mod 9). (3.31)
Corollary 3.1.3 follows from the Corollary 3.1.2 and (3.31). O

Theorem 3.2 Let S denote the set consisting of one copy of the positive integers that are
not congruent to £3 (mod 9) and one additional copy of those positive integers that are
multiples of 9. Let T denote the set consisting of one copy of the positive integers that are
not multiples of 9. Let A(N) and B(N) be the number of partitions of 2N into, respectively,
odd parts in S or into even positive integers that are not multiples of 9 and even parts in S or
into even positive integers that are not multiples of 9. Let C(N) be the number of partitions
of N into odd parts in S and let D(N) and E(N) be the number of partitions of 2N into,
respectively, odd parts in T and even number of even parts in T. Then,

i forN =1, A(N)=B(N —1),
(i) for N >0, C2N +1) = D(N) and C(2N) = E(N).

Proof Multiplying x(—q)/x(—g°) on both sides of the identity (3.7) and using the fact
X (@) ¥ (—q) = f(—q%), we find that

xCOx*(=q%) | x(—q) _ f(=q*)

= . 3.32
=y T T e 332
Replacing g by —¢ in (3.32), we obtain
x@x*@”)  x@ _ f(—¢?
_ = . 3.33
@ @ Fea® 539
Subtracting (3.32) from (3.33), we have
X@x*@”)  xCox*=¢) _ (x@ | x(=9)
3 — 3 = 5 o |- (3.34)
x(q°) x(=q°) x@q”)  x(=¢°)
Adding (3.32) and (3.33), we deduce that
X@x*@”) | x—ox*(—¢®) ( x@)  x(=9) ) f(=q%
= - —_— (3.35)
x(q?) x(=q%) x(@®)  x(=q%) f(=q'®
Using (3.4) in (3.35), we arrive at
X@x*@”) | xxP=aM)\ f(=4") _ 2 x(=q%  f(=q"®) 2
x(q?) x(=q%) f(=¢* x(=a®)x*(=¢"®) f(=¢»
(3.36)
Recall the formula for the multipliers for degree 9 [6, p. 352, Entry 3(x)],
1/8 _ 1/8 _ 1/8
a- ()" (-G e
o 11—« a(l —a)

where m is defined as in (1.6). The above modular equation can be transformed into (see

[10D)

(3.38)

(4% D (0% 4D .y (34D (@4
(4840 (4" ¢®) (4% 4™ @ ¢ |

e &\ Springer



640 M. S. Mahadeva Naika et al.

Employing (3.38) in (3.35), we obtain

(—4: 90 (—4%: 4" | @:9%@% 0" (%D | @% 4P
3. 4,6 3. ,6 = 18. 4,18 18. 4,18 - (339

(=47 4°) (g°:4°) (=9"%:9")c  (@'%q¢"°)0
It is now clear that (3.36) and (3.34), (3.39) have the partition-theoretic interpretation as
claimed in (i) and (ii) of Theorem 3.2, respectively. O

Example 2 Let N = 4. Then A(4) = B(3) = 7, we have the representation
Tr4+1,=54+1,42=8=6+2=44+4=442+4+2=242+4+2+2,
4y +2, =4, +2=4+42,=6=44+2=242+2,=2+2+2.

Let N =9. Then C(19) = D(9) =4, and

19r:13r+5r+]r:]1r+7r+1r:9r+9b+]r»
1741=154+3=13+5=11+7.

Also, C(18) = E(9) =4, and

17, +1, =13, 45, =11, +7, =9, + 9,
164+2=144+4=12+6=10+8.

Theorem 3.3 Let S denote the set consisting of one copy of the positive integers and one
additional copy of those positive integers that are not congruent to £3 (mod 9). Let T
denote the set consisting of the positive integers that are not multiples of 9. Let A(N) be
the number of partitions of N into odd elements of S, let B(N) be the number of partitions
of 2N into even elements of S, let C(N) and D(N) be the number of partitions of 2N into,
respectively, odd elements of T and even elements of T and let E(N) be the number of
partitions of 2N into even number of even parts in T. Then, for N > 0,

A@2N)=C(N)and AN +1) =3 D(N) — B(N) = D(N) + E(N).

Proof Multiplying (3.1) by X(q9)/x(q) on both sides and using the fact x(¢)¥(—¢q) =
f(—g?), we have

X@x@) x4 3 f(—q')

= ) 3.40
x(q?) ORI D (G40
Replacing g by —¢ in (3.40), we obtain
20 _ 9 _ .9 _ 18
x( q)xg a) _x(=q) , [f( qz)_ (341)
x(=q>) x(—=q) f(=q%)
Adding (3.40) and (3.41), we find that
X @x@)  Epx(—9®)  x(=¢”) | x(@”)
5 3 = ) (3.42)
x(q°) x(—=q°) x(=q)  x(q)
Subtracting (3.41) from (3.40), we obtain
C@x@® x4 @%q® | (x@)  x(=¢°)
o — 3 =60~ — . (3.43)
x(q°) x(—=q°) (475970 x(@)  x(—=q)
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Using the identity (3.4) in (3.43), we deduce that

X@x@’) _ PEox=4") _ q(qlg;q”‘)oo (4% a95(=4" 4o
x(q?) x(=4?) (4% qH)oo (=4% 4%

(3.44)
Consider the modular equation of degree 9 [6, p. 352, Entry 3(xi)],

3 1/8 1 —a\ /8 1— 1/8
o)) G e
Vm o \B -8 B —B)
where m is defined by (1.6). The identity (3.45) can be converted to g-product identity

@40 (=0*14"™)x _ {(qlg;q's)oo (—qlg;qls)oo}

(3.46)

@:9M (4¢P
Applying (3.46) in (3.43), we have

C@x@)  xPCox=a) _, @M {(qls;qlg)oo (=4"% ¢"™)oo

(4% 4P oo (=42 ¢H o

= q .

x(q?) x(=q% (4% 4% oo @54 (=¢% 4
(3.47)
From (3.42) and (3.44), (3.47), we deduce the partition identity as claimed in the theorem.
O

Example 3 Let N = 3. Then A(6) = C(3) = 4, and
S5b+ 1L =5 +1=5%+1,=5+1,,
541=34+3=34+14+14+1=14+14+14+1+1+1.
Also, A(7) =4,D(3)=3,B3)=5 and E(3) = 1, and

Tr=Tp =541+ 1 =5, + 1, + 1},
6=4+2=2+42+2,

6, =4, +2, =4, +2p =4p +2p = 4p + 2,
4+2.

Theorem 3.4 Let S denote the set consisting of one copy of the positive integers and five
additional copies of those positive integers that are multiples of 3. Let T denote the set
consisting of four copies of the positive integers that are not multiples of 3. Let A(N) and
B(N) be the number of partitions of 2N into, respectively, odd parts in S or into four
different colors of positive integers that are not multiples of 3 and even parts in S or into
Sour different colors of positive integers that are not multiples of 3. Let C(N) be the number
of partitions of N into odd parts in S and let D(N) and E(N) be the number of partitions
of 2N into, respectively, odd parts in T and even number of even parts in T. Then,

(i) forN >1, A(N)=4B(N —1),
(i) for N >0, C2N +1)=D(N) and C(2N) = E(N).

Proof From [6, p. 345, Entry 1(i)]

x’(—4*) v (q)
1= ) 3.48
qx3(—q) qv*(q?) (.48)

Fus &\ Springer



642 M. S. Mahadeva Naika et al.

Multiplying (3.48) by ¢ x*(—¢)/x*(—¢>) on both sides and using the fact ¥ (¢)x (—¢) =
f(—q?), we arrive at

x'—q)  fH=q?

X(—)x’(—¢>) +q ) =g (3.49)
Replacing g by —¢ in (3.49), we obtain
4 4o 2
X)) _ (=g
— 3.50
X@Dx’@) —q 4( 3 T g (3.50)
Adding (3.49) and (3.50), we arrive at
4 4 4_g2
S0 + 3 (e S—ad) =g (LD XD N =) 3.5]
x@x (@) + x (=) x (=q”) q<x4(q3) =) FA(—qb (3.51)

Settinga = ¢ = g and b = d = ¢° in (2.2) and (2.3), then multiplying both resulting
identities, we obtain an identity equivalent to
(=q:9 (4: 99)% 2. 2 6. 6,5

- =89(=4" 4o (—4"5 4")%- (3.52)
(—4% 4% (@% 9% * *

Using (3.52) in (3.51), we find an identity equivalent to

204
)oo

(q% q%%

—q,; 200_3§ 6go+ ;200 3; 620
{(=a: 4Moo(=a7: 4% + (43 4" (471 4°) }(qz;qz)‘o‘o (3.53)

03 (4% g%

=84%(—q% ¢)0o(—q% ¢ STy +2.

Consider the multiplier of degree 3 [6, p. 230, Entry 5(vii)],

1/2 1/2 1/2
»_ (B 1-8 B —B)
" _<a> +(1—a> <a<1—a>> ’ (354

where m is defined by (1.6). The above modular equation can be transcribed into (see [10])

(R N 0 P I G £ i PR C LR 8 (3.55)
(—q% q%%  (¢% ¢%% (=43 q%% (4% q%%
Employing (3.55) in (3.51), we obtain
(_ 2; 2)4 (2; 2)4
(=43 Poo(=4% 4% + (@5 4Poo(@®; g% = 0T 200 | M 2T Joo (3 56)

(%490 (@%q%%
Subtracting (3.49) from (3.50), we deduce that

24 (q: ¢>)%

(=45 99)% 4 )0
0% @O } G2

(=% q

(=45 o043 493 — (@3 4D (@ 43 = ¢ {

It is now easy to see that (3.53) and (3.56), (3.57), respectively, have partition-theoretic
interpretation claimed in Theorem 3.4 (i) and (ii). O
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Color Partition Identities Arising from Ramanujan’s Theta-Functions 643

Example 4 Let N = 2. Then A(2) = 20 and B(1) = 5, and
dr=4p=46=4p=3,+1,=3,+1,=3,+1,=3,+1,=3,+1,=3,+1,
= 2 + 2g, 9 further partitions of the form 2 + 2,

2, =2pr =25 =26 =2p.

Also, C(4) = E(2) = 6,and

3, + 1,, 5 further partitions of the form 3 + 1,
2,, + 2p,, 5 further partitions of the form 2 4 2.

Corollary 3.4.1 Let p(j135(n) be the number of six colored partitions of n with five of the
six colors appearing only in parts that are multiples of 3. Then

@% 4% @% a0 (@ D% @ a0 @ )3

o
Z p[1135](2n)q" = 4q

(3.58)
~ @ 93(q% gHE (@ )L
Proof We have
> 1
pissy(Mg" = ———————ar. (3.59)
;) 1 @ Doo(d 43

Therefore,

o0 oo
ZO Pz (mq” + ZO Pizs)(n)(—¢q)"
n=| n=|
(3.60)
(q4; q4)oo(q12§ q12)go 2 3. 675 2 3. 675
= (=45 900 (=475 4")% + (45 47)0 (75 470 f -
(4% 4H%(q% gL { * * * ol
Employing (3.53) in (3.60), then comparing even terms from both sides of the resulting
identity, we obtain (3.58). O

Corollary 3.4.2 We have
p1ias(dn +2) = 0 (mod 2), (3.61)

Proof Using (3.19), we deduce that
(@: D% 4P)o(@® a9 (0% qHw

= (mod 2). (3.63)
(g% q>)k (@'% ¢")oo
From (3.58) and (3.63), we obtain (3.61) and (3.62). (I

Theorem 3.5 Let S denote the set consisting of five copies of the positive integers and
one additional copy of those positive integers that are multiples of 3. Let T denote the set
consisting of four different colors of the positive integers that are not multiples of 3. Let
A(N) be the number of partitions of N into odd elements of S, let B(N) be the number of
partitions of 2N into even elements of S, let C(N) and D(N) be the number of partitions
of 2N into, respectively, odd elements of T and even elements of T and let E(N) be the
number of partitions of 2N into even number of even parts in T. Then, for N > 0,

A@2N)=C(N) and ACN+1)=9D(N)—-4B(N)=4D(N)+ E(N).
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Proof From [6, p. 345, Entry 1(ii)]

1/3
1437 ) _ 1+9qL(_q3) / (3.64)
Y (—q) U (=q) ' )
Invoking (3.1) in (3.64), we find that
9 4 3
x (@) ¥ (—q”)
ROy (369
Multiplying (3.65) by x*(¢3)/x*(g), we obtain
4, 3 4 6
5 3 x"(q”) (=g
= 9 ) 3.66
X (@)x(g”) @) + 1 qD) (3.66)
Replacing g by —¢q, we get
x*(—q?) 4(—4%
= —9q . 3.67
X x(—q)) = Ao U ECh (3.67)
Adding (3.66) and (3.67), we arrive at
3. 64 _ 3., 6\4
(=4: 492 (=% 4%)o0 + (41 42 (@ 4%)o0 = (ZI;’ZZ)ZO ((_2;’;2))5 (3.68)
Subtracting (3.67) from (3.66), we obtain
4,3 4, 3 4, 6
@) = on-g) =4 4((‘1(’1)) -2 4((_‘2)) 1 q'J’;E_qz) (3.69)
Using (3.52) in (3.69), we deduce an identity equivalent to
(q°% g%,

4 4% 400 — (@5 47027 ¢ =18¢ —5—522 Y 894" 413 4% ¢%)o0

(3.70)

( 2
Consider the multiplier of degree 3 [6, p. 230, Entry 5(vii)],

9 a\"? 1—a\"?* (el —a)\'?
W:(B) +<1—ﬂ> <ﬂ(l—ﬁ)> ’ G7h

where m is defined as in (1.6). The above modular equation can be transformed into the
g-products

- - 372
(@:9P)%  (—q:9D% @ aME (=42 gD G72)

Employing (3.72) in (3.69), we arrive at

@149  (=a*q9% _ {(qé;cf)‘éo (—qﬁ;qﬁ)io}

230 (=a%: 4% 00 — (45 432 (@%; %o

(q 7%% (@%q%%, | (=q% g% (3.73)
1@ % (O P G RN b

It is now readily seen that (3.68) and (3.70), (3.73), have the partition-theoretic interpretation

as claimed in Theorem 3.5. O

(—q 59
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Color Partition Identities Arising from Ramanujan’s Theta-Functions 645

Example 5 Let N = 2. Then A(4) = C(2) = 35, and
33 +1, =3p+1,=3,+1,=3,+1, =3, + 1, =3, + 1, 24 additional
representations of the form 3 + 1
= 1, + 1 + 14 + 1,, 4 further representations of the form 1 +1+1+1,
1g + 1g 4+ 1g + 1, 34 further partitions of the form 1 + 1+ 1 + 1.
Also, A(5) = 66, B(2) = 15, D(2) = 14 and E(2) = 10, and
5, =5y =5, =5,=5, =3, + 1, + 1,,, 59 further partitions of the form 3 + 1 + 1
=1l +1p+1g+1,+1p,
4, = 4y =44 =4, =4, =2, + 25,9 further partitions of the form 2 + 2,
dr = 4p =46 =40 =2r +2r =2r + 25 =2 + 26 = 2r + 20, 6 further

representations of the form 2 + 2.

Corollary 3.5.1 Let ps311(n) be the number of six colored partitions of n with one of the

six colors appearing only in parts that are multiples of 3. Then

0(0% 4)3%(@% a)3(@% 4%, (0% 4%)50(a% 4%
(4 K @ DR ¢

o0
> pussn@ntg" = . (3.74)

n=0

Proof We have
> 1
prisa(n)gt = ————————. (3.75)
g s (@: D% 470
Therefore,

23020 pps3yn+ 1)g>+!
_ g% gh%@"% 9P
(q% 4 8(q% %%

{(=4: 493 (=% 4900 — (@: 43 (% ¢%) o } -

(3.76)
Employing (3.70) in (3.76), then comparing odd terms from both sides of the resulting
identity, we obtain (3.74). O
Corollary 3.5.2 We have

Pps3(@n +3) =0 (mod 2), (3.77)
P15311(8n +5) =0 (mod 2). (3.78)

Proof Using (3.19), we deduce that

2. ,2\5 3. .,3y2 6. 6 12. 12
0 a)5% g 1):Q(q 1) _ (4 4,614 )oo (mod 2), (3.79)
(@ Dos (@* 4N

From (3.74) and (3.79), we obtain (3.77) and (3.78). O

Theorem 3.6 Let S denote the set consisting of six copies of the positive integers and three
additional copies of those positive integers that are not multiples of 3. Let A(N) be the
number of partitions of N into odd parts in S, let B(N) be the number of partitions of 2N
into even parts in S. Let C(N) be the number of partitions of 2N — 2 into parts congruent

g
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646 M. S. Mahadeva Naika et al.

to £2, £4 or 6 (mod 12) having four different colors, with parts congruent to 6 (mod 12)
having two additional color and with parts congruent to £2 (mod 12) having one additional
color and let D(N) be the number of partitions of 2N into parts congruent +1, +4or =+
5 (mod 12) having four distinct colors. Then,

() forN>1 AQN)=36C(N) =4 B(N) and
(i) for N >0, AQN + 1) =9 D(N).

Proof Replacing g by —q in (3.65), we have

9, 403
x3( q3) o ql/f4(q ). (3.80)
x°(=q°) v (q)
Add (3.65) with (3.80). Then invoking (3.52) and Euler’s identity (2.7), we find that
e 2249 . 2Y9 2
( q3,616)o30 ((]3’616)03O =2+4+T2 7 12)5 6q126 aE. 12V4 - (3.8
(=443 (@1 4")5% (@755 9 3(q% 4" )% (G% 5 )%
Subtracting (3.80) from (3.65) and then employing (2.7), we have
(Ca:a% _ @as o | @aDs | (aha0% | @Pas g
(4% 493, (@43 (@:9D%  (—a:qD% | (@*aHi
From [7, p. 376, Entry 37(vii)],
3 30 30,2
14 (Z) " ¥ ( Z) =2W (q6). (3.83)
v(g)  ¥(—q°) ¥ (g®)
Cube both sides of the identity (3.83). Then rewriting in q-products, we have
PN« N 2. .2Y9
4400 | W40 _ 074740 ¢ (3.84)

(=4 993 @493, (9% %3,
Now, Theorem 3.6 (i) follows from the identities (3.81) and (3.84) and (ii) follows from
(3.82). O

Example 6 Let N = 2. Then A(4) = 180, C(2) = 5 and B(2) = 45 and
3, +1, = 3, + 1 =3, + 15 = 3, + 1,, 50 further representations of the form 3 + 1
= 1, + 1, + 14 + 1,, 125 further partitions of the form 1 + 1+ 1+ 1,
2R =2 =26 =20 =2y,
4 =4y =4 =4, =4, =4, =4, =4; =4, =2, + 2, =2, + 2, 34 further
partitions of the form 2 + 2.
Also, A(5) =351 and D(2) = 39
5 =5,=54, =5,=5,=5, =5 =5, =5, =3, + 1, + 15, 215 further partitions
of the form 3 + 1+ 1
= 1, + 1 + 1 + 1, + 1y, 125 further partitions of the form 1 +1+ 1+ 1+ 1,
4r = 4p =46 =40 = 1g + 1g + 1g + 1R, 34 further representations of the form
1+14+141.

Corollary 3.6.1 We have A(2N) =0 (mod 36) and A2N + 1), B(N) = 0 (mod 9).
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Color Partition Identities Arising from Ramanujan’s Theta-Functions 647

Theorem 3.7 Let S denote the set consisting of two copies of the positive integers that are
not multiples of 4 and one additional copy of those positive integers that are not multiples
of 3 or 4. Let T denote the set consisting of 2 copies of the positive integers that are not
congruent to 2 (mod 4) and one additional copy of those positive integers that are not mul-
tiples of 3 or not congruent to 2 (mod 4). Let A(N) and B(N) be the number of partitions
of 2N into, respectively, parts in S and parts in T. Then, for N > 1,

A(N) =2 B(N).

Proof Replacing g by ¢ in (3.83), multiplying by ¥>3(¢)/¥(g) on both sides of the
resulting equation, we deduce that

@@ v @ v ehvi@)

Y@V Y (=YD v @YD)
Replacing g by —q in (3.85), then add the resulting equation with (3.85), we have the
equivalent g-product identity

(3.85)

D3 (=4"% 00 (@ —D3(—=q"% 10
(—4* g3 (=% Po  (—=¢* qM3 (@3 -9

+2

(3.86)
L Cad=4%aP)w | @i -3 (=4% 4P
(—4% 9% (=% a0 (—¢% M35 =D |

Equating the coefficients of ¢> on both sides of the equation, we complete the proof. [

Example 7 Let N = 2. Then A(2) = 18 and B(2) = 9, and

3p+1l, =341y =3+ 1, =3p+1,=3p+1,=3p + 1y =2, + 2 =2, + 2, =25 + 2,
=2 +1,+1p,=2,+1, + 1, =2, + 1, + 1, 6 further partitions
of the form2 + 1+ 1,
4 =4p=4g=3,+1, =3, +1, =3+ 1, =3+ 1, =3, + 1, =3, + 1.

Theorem 3.8 Let S denote the set consisting of one copy of the positive integers that are not
congruent to 6 (mod 12) and another copy of the positive integers that are either congruent
to £5 (mod 12) or are multiples of 4. Let A(N) be the number of partitions of 2N + 1 into
odd parts in S and Let B(N) be the number of partitions of 2N into odd parts in S. Then
A(N) = B(N).

Proof Setting a = ¢, b = ¢> in (2.11), we obtain the equality
f@.aH @ q) = f(~a. - f(~*. ") = 24f @*. 4" )W (ghH.  (3.87)

Invoking (2.5), (2.6), and (2.7) in (3.87), we have

(—4% 4P

4, 4
7(—q6;q12)00(_q 34 oo

(3.88)
on both sides of the equation, we complete the proof. [

(=43 o00 (=4, =473 400 — (@5 4@, 43 4o = 2

Equating the coefficients of g2V !

R
)
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648 M. S. Mahadeva Naika et al.

Example 8 Let N = 7. Then A(7) = B(7) =9, and

15, = 1L, +3,+1, =9, +5+1, =9 + 5+ L, =T, +Tp + 1, =7, + 5, + 3,
:7b+5r+3r:7r+5h+3r:7h+5h+3r,
14, =12, +2, =12, +2, =10, +4, =10, + 4, =8, + 4, +2, =8, + 4, + 2,

= 8b+4r+2r:8b+4b+2r-

4 Partitions and Theta Constant Identities of Degree 5

Theorem 4.1 Let A(N) denote the number of partitions of N into five distinct colors, with
one color, appearing at most once and only in odd parts that are not multiples of 5 and
remaining colors also appearing at most once and only in odd parts, let B(N) denote the
number of partitions of 2N — 2 into two distinct colors of even positive integers that are not
multiples of 20, with parts congruent to £2 or + 6 (mod 20) having one additional color
and with parts congruent to 10 (mod 20) having additional 2 colors and let C(N) be the
number of partitions of 2N into 2 distinct colors of positive integers that are not multiples
of 5, wherein odd parts are distinct. Then,

() for N >1, AQ2N) =10 B(N) and
(i) for N >0, AQN +1)=5C(N).

Proof From [7 p. 202, Entry 50(ii)]

5 2 5
x>(q) v(—q°)
=1+5¢g———". 4.1
X @) Vo) @D
Replacing g by —¢ in (4.1), we obtain
5 20,5
x7(—q) v(q)
=1- ) 4.2
X TV @2
Adding (4.1) and (4.2), we find that
5 5 2 5 20,5
x°(@)  x(—q) ¥vo(—=q>) v°(@q)
=245 - ) 43
x@ e 70T (wZ(—q) V(@ ) @9

Seta=¢q,b=q° c=4q3 andd = ¢’ in (2.8) and (2.9). Then multiplying the resulting
identities, we obtain the following equivalent q-product identity

(—q; g% (q: 9H% 2. 2 10. 10\3
i T =49(=4"4)o0(=4 "1 4 )50 4.4)

Invoking (2.2), (2.6), (2.7), and (4.4) in (4.3), we obtain the equality

@*; 4*)%,

—a:973% . (@9

=2+20q° Y
=4°9%% (@9 (% 4M3(a%*, 4%, ¢, ¢'% 4?0
Now, subtracting (4.2) from (4.1) and using (2.7), we find that
(—¢:93%  (@:4D3 (—a:9M% | (@995 | @%q¢'0% “6)

J— — q .

4% 900 (4% 4o (=4%9"%  (@%49M% | @% ek
Equations (4.5) and (4.6) give the partition-theoretic interpretation given in Theorem 4.1.
O
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Example 9 Let N = 3. Then A(6) = 80 and B(3) = 8§, and we record the interpretation
5+ 1, = 5, + 1p, 18 further representations of the form 5 + 1
= 3, 4+ 3, =3, 4+ 3,, 8 further representations of the form 3 + 3
3.+ 1, 4+ 1 + 1,, 49 further partitions of the form3 + 1+ 1+ 1,
4y =4y, 2+ 2, =20+ 20 =20 + 25 =25 + 24 =2 + 25 =2 + 2.
Now, Let N = 2. Then A(5) = 55and C(2) = 11, and
5y =5y =5, =54 =3, + 1, + 15, 49 more partitions of the form 3 + 1 + 1
L+ 1+ Lo+ L+ 1y,
4p=2r +2r=2r +2p=2p+2p=3r+1g=3r+1p=3p +1r=3p+1p
2R+ 1g+1p =2p+1g + 1p.

4R

Corollary 4.1.1 Let pjjss-1)(n) be the number of 5 colored partitions of n with one of the
colors appearing only in parts that are not multiples of 5. Then

G n @ a0 e% a3 4% 4% oo(q"% ¢'3,
ZP[ISS*I](Z”)‘] = 7,10. 410 o T 10 3 (75 5 “.7
= (@7 4 )oo(q5 Do (4 D)50(q%; 47)o0
Proof We have
if’ g = @) @°:9"Mq" ")
55— = =
e (4 D% (@ 49)3%(q% qM)%
Therefore
10. ,10\2 (4. 45 2\ N
22210 P[155*'](2”)‘12n = (q20,q20)oo(q2, qz)fg ( Z ql())oo ((:]s’ ql())oo :
@74 0(@%5 900 | (=479 )0 (@759 )oo
4.8)
Using (4.5) in (4.8) and then replacing g2 by ¢, we obtain (4.7). O
Corollary 4.1.2
p[15571](2n + 2) =0 (mod 10) (49)
Proof Employing (3.19), we deduce that
5..5\2 (2. ,2\5
E"](’)q 33‘;@("’ ;;’g =1 (mod 10). (4.10)
q 7497 )o\q; q)x
Congruence (4.9) follows from (4.7) and (4.10). O

Theorem 4.2 Let S denote the set consisting of one copy of the positive integers and three
additional copies of those positive integers that are multiples of 5. Let T denote the set
consisting of two copies of the positive integers that are not multiples of 5. Let A(N) be
the number of partitions of 2N into odd parts in S or into two colors of even parts that are
not multiples of 5 and let B(N) be the number of partitions of 2N — 2 into even parts in
S or into two colors of even parts that are not multiples of 5. Let C(N) be the number of
partitions of N into odd parts in S and let D(N) and E(N) be the number of partitions of
2N into, respectively, odd parts in T and even number of even parts in T. Then,

(i) forN >1, A(N)=2B(N) and

con
S 9 /Vi
R
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650 M. S. Mahadeva Naika et al.

(i) for N >0, C2N + 1) = D(N) and C(2N) = E(N).
Proof From [8, p. 365, Entry 18]
f@éq°)

Vi (—q) +q¥*(—q°) = @ (4.11)

Multiplying (4.11) by x2(q)/f?*(—¢'?) on both sides and then invoking (2.2)—(2.3) and
(2.6), we find that

q% qH% (—q; 4%
(=45 4P o0 (—q°; ¢')2 = q . (4.12)
> T (q19 4192 T T (=¢5; q'02
Replacing ¢ by —¢ in (4.12), we find that
2. . 2\2 . 2N\2
@47 0(q: ") = UL —q @4 )5 (4.13)

@ ¢ (@ q'0%
Subtracting (4.13) from (4.12), we obtain the equality

(—q:99% | (q:9D%
(=¢°:¢'9%, (@7 ¢'9%
(4.14)

(~4: 4o (=4 ¢'03 — (45 4P (@ ¢' D3 = g {

On the other hand adding (4.12) with (4.13), we obtain
(—=4: 4 oo(—=q%: '3 + (43 4P (g7 '),
L, @k { N I } (*15)

(@' q'""% (=543, (@%q'"M%
Employing (4.4) in (4.15), we have

(q'% q')2
{(=4: 4o (=4 ¢"D% + (4: D)o@’ "%} =552

2. 2)2
20 2.2 0. 10 @'%a')3 s @10
— . . 2 o0
=49°(—q°: 9 )0 (—q "; q )mm+2-
Consider the multiplier of degree 5 [6, p. 281, Entry 13(xii)],
1/4 1— g\ /4 1— 1/4
m=(P) (=AY _(PU=ANT @17
o l —« a(l —a)

where m is defined as in (1.6). The above modular equation can be transcribed into (see

[10D)

(—¢* a3 @haDi _ | Caddd @i “18)
(_ql(); qlo)go (ql(); qlo)go (_qS; ql())%o (qS; ql())go
Using (4.18) in (4.15), we deduce that
(—4% 9% | (@* Dk
(=45 4Doe (=% '3 + (@5 4@ '3 = . (4.19)
= °° > T (=q'%¢19Z T (¢'% 4192
Now, Theorem 4.2 follows from (4.16), (4.14), and (4.19). O

Example 10 Let N = 3. Then A(3) = 16 and B(3) = 8, and
6=6=5+1,=5+1,=5+1,=5+1,=4+2=4+2=4+2=4+2
=3, 4241, =3, 4+241,=24242=2+4242=242+2=24+2+2,

4 =4=4=2,4+2=2,+2=2+2=2+2=2+2.
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Now, let N = 7. Then C(14) = E(7) = 12, and
13, +1, =11, +3, =9 +5 =9 +5 =9 +5g =9 +5=5+5+3+1,,
5 further representations of the form 5 + 543 + 1,
1242=1242=1242=1242=8+6=8+6=8+6=8+6=6+4+2+2
=6+4+2+2=6+4+2+2=6+4+2+2.
Corollary 4.2.1 Let pjy153(n) be the number of four colored partitions of n with three of
the four colors appearing only in parts that are multiples of 5. We have
.- . (4% 473%@": "% | @5 aD)@"% ")
Zp[1153](2”)‘1 =2— 3 5. /59 5. ,5)8
= (43 9)5 (47 7)o (@7 47)%

(4.20)

Proof We have

o0
1 1
Prissmq” = = ,
,,2:(:) (s (@ D@93 (@%@ ¢193(q; Do (@5 ¢10)3,
so that
22210 p[1|53](2n)q2"
@* 49 (@™ )% 2 5. 103 s s 10w 42D
= (=430 (=4 ¢")3 + (@1 4700 (q”: ") 30 | -
(g% g% (g0 ¢'0)8, { > o > !
Using (4.16) in (4.21), we deduce (4.20). O
Corollary 4.2.2 We have
Piisy(4n +2) = 0 (mod 2). (4.22)

Proof Employing (3.19) in (4.20), we deduce that

0 2. .2
S sy @t = S0 uoq), (4.23)

= (@' q"00

which yields (4.22). O

Theorem 4.3 Let S denote the set consisting of three copies of the positive integers and
one additional copy of those positive integers that are multiples of 5. Let T denote the set
consisting of two distinct colors of the positive integers that are not multiples of 5. Let A(N)
be the number of partitions of N into odd parts in S, let B(N) be the number of partitions
of 2N into even parts in S, let C(N) and D(N) be the number of partitions of 2N into,
respectively, odd parts in T and even parts in T and let E(N) be the number of partitions
of 2N into even number of even parts in T. Then, for N > 1,

AQN) = C(N) and AN +1) =5 D(N) —2 B(N) =2 D(N) + E(N).

Proof From [8, p. 366, Entry 19]

*(q)

2(_g) + 5q 02 (—q%) = )
V(=) + 59y~ (=q") O

(4.24)
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Equivalent g-product identity of (4.24) is

—a’1a'% o (=a"%q'"%
(—q: 493 (4% 40 = +5q . (4.25)
> T (4 9)% (—q% ¢%
Replacing g by —¢g, we obtain
@:q'""% (—=4"% "%
@993 4" = —5q . (4.26)
> T (@592 (—q% g»%

Adding (4.26) and (4.25), we find that

@ 4% | (=¢° 4",
(=4: 43 (=0% 00 + (@: 43 (@7 4o = .
* > * T (D% (D%

(4.27)

Now, subtracting (4.26) from (4.25), we find that
(—4: 493 (=4 4" — (0:¢73.0%: 'O
_ 10g @"%54"%  @5ed"% (=4’ 49"% (4.28)
(4% 9»%

@:9%  (—q19D%
Employing (4.4) in (4.28), we deduce that

(=4 4)3(=4°: 400 — (45473 @5 ¢ D)oo
_ q'%; qlo)go (4.29)

45550 —4q4(=q% 4% (=¢"% ¢'%)
4% ¢H% > >
Consider the multiplier of degree 5 [6, p. 281, Entry 3(xii)],
5 1/4 1—a\/4 1— 1/4
6 G e
m B 1-8 B —p)

where m is defined by (1.6). The above modular equation can be transformed into the g-
products

(qS; qIO)%O B (_qS’ QIO)gO _ (qlo;ql())go B (_ql(); qIO)%O 131
22 o 2. ,2\2 —2..2\2 (4.3D)
(q:97)5% (=95 97)% G° 975 (—=9% 995
Employing (4.31) in (4.28), we have
(=45 973. (4% 4" — (4: 473 (@°; 1100
_ 4 (q@'% q'9% @' ¢ (=q'%q'"% (4.32)
(@% 9»% (4% q»% (=42 ¢»%
Theorem 4.3 readily follows from (4.27), (4.29), and (4.32). O

Example 11 Let N = 3. Then A(6) = C(3) = 18, and

5, + 1, = 5, + 1, 10further partitions of the form5 + 1

3 +3p =3, +3,=3p+3, =3, + L, + 1, + 1, =3, + 1, + I, + I,
=3 +1,+1,+ 1g,

34+43=3+3=3+3=3+1+1+1,7 further representations of the form 3 + 14+ 1+ 1
=14+14+1+1+1+1, 6 further partitions of the form1 +1+ 1+ 1+ 1+ 1.

$ ) (ii “,
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Also, A(7) =24, D(3) = 10, B(3) = 13 and E(3) = 4, and
7, =Tp =T¢ =5, + 1, + 1, 11 more representations of the form 5+ 1+ 1
= 3, + 3, + 1, =3, + 35 + 1, 7 further partitions of the form 3 + 3 + 1,
6 = 6=4+42=442=442=442=24242=24242=24242=242+2,
6, = 6, = 6, =4, +2,, 8 further partitions of the form 4 + 2
=2, +2p+2,,
44+2=442=44+2=4+42.

Corollary 4.3.1 Let p(j351(n) be the number of four colored partitions of n with one of the
colors appearing only in parts that are multiples of 5. We have

(@ a93@"% ¢ @%aDH5% @' q'D%
(q; )% (@: 9)2%(q%; 403,

o0
> ppss@n+ 1g" =5 4.33)

n=0

Proof The proof of (4.33) is similar to the proof of (4.20), except that in place of (4.16),
(4.29) is used. O

Corollary 4.3.2 We have
ppssty(@n +3) = 0 (mod 2). (4.34)

Proof Employing (3.19) in (4.33), we deduce that

0 10. ,10
ZP[13511(2H 1) = (¢ 2, q2 )oo
= (4% 4700

which yields (4.34). O

(mod 2). (4.35)

5 Partitions and Theta Constant Identities of Degree 7

Theorem 5.1 Let S denote the set consisting of one copy of the positive integers that are not
multiples of 4 and one additional copy of the positive multiples of 7 that are not multiples of
4. Let T denote the set consisting of one copy of the positive integers that are not congruent
to 2 (mod 4) and one additional copy of the positive multiples of 7 that are not congruent
to 2 (mod4). Let A(N) be the number of partitions of 2N + 1 into parts in S and B(N) be the
number of partitions of 2N — 1 into parts in T. Then, for N > 1,

A(N) =2 B(N).

Proof Replacing g by ¢ in (1.1), multiplying by (—¢; ¢%)oo(—q": ¢'*)0o on both sides of
the resulting equation and then using (2.7), we deduce that

(¢ Doo(=4"19D00  (=4:4D)00(=9"19M)o0 _ et Doo(—4"; 4o
(=4% qMoo (=47 40 (=475 ¢Hoo (=" ¢ (4% qMoo(—q": qzs()so%
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Replacing ¢ by —g in (5.1), subtracting the resulting identity from (5.1) and then using
(1.1), we have

(4 D=4 4N @ —Dx@i —aD
(—4% o005 00 (—0% 4D (—0% 4% e 1 (5.2)
=22{ 4 D(=4"30N0 (@ =D(g’s =40 }
(=4% qH00(=0" 40 (—4% M oo(—9'*: %) 0 |

2N+1

Equating the coefficients of ¢ on both sides of the equation, we complete the proof. [

Example 12 Let N = 6. Then A(6) = 12 and B(6) = 6, and
13=1142=1043=104+2+1=94+5=94+34+2=74+6=7+6

T4+54+1=T+5+1=7+34+24+1=T4+34+2+1,

11 =8+43=74+4=74+4=74+34+1=T+3+1.

6 Partitions and Theta Constant Identities of Degree 15

Theorem 6.1 Let A(N) denote the number of partitions of 2N + 1 into parts congruent
to £12, £24, 420 (mod 60) or into four distinct colors, with two colors appearing at most
once and only in odd parts and the remaining two colors, also appearing at most once and
only in odd multiples of 15 and let B(N) denote the number of partitions of 2N into even
positive integers that are not multiples of 60, with parts congruent to 30 (mod 60) having
one additional color, or into two distinct colors with one color appearing at most once and
only in odd multiples of three and the other color, also appearing at most once and only in
odd multiples of 5. Then
A(N) =2 B(N).

Proof From [6, p. 377, Entry 9(ii)]
9(=4°)0(=4"") + 249 )V @) = ¢(@e(q"). ©.1)
Replacing g by —¢g in (6.1), then subtracting the resulting identity from (6.1), we find that
e@e(a") = e—ae(=q") =2 (VW @) +V(=V(=a)). (62
Rewriting (6.2) in g-products, we have
(=45 49)3(=4" *)% — (@5 475" 703
(q12%, g20% g2 460, 460) 0
b b ’ b 6.3
Y (4% 4%00(=4°; 4")o0 + (% %0 (¢%; 4" ©3
(@2 4)00(4%% 40) o0 '

It is now easily seen that (6.3) has partition-theoretical interpretation claimed in Theorem
6.1. O

Example 13 Let N = 4. Then A(4) = 12 and B(4) = 6, we have the representations

9r = 9b:5r+3r+1r:5r+3r+]b:5r+3b+]r:5r+3b+]b:5b+3r+lr
=543+ =5+3+1,=5%+3+1=7+1,+ 1, =T+ 1, + 1p,

8 =6+2=5+4+3=44+4=4+2+2=2+2+2+2.
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Theorem 6.2 Let A(N) denote the number of partitions of 2N + 1 into two distinct colors,
with one color appearing at most once and only in odd parts and the remaining color, also
appearing at most once and only in odd parts that are not multiples of 3 or 5, but both.
Let C(N) denote the number of partitions of 2N into even positive integers that are not
multiples of 12 or 20, with parts congruent to 30 (mod 60) having one additional color.
Then A(0) = 2, and for N > 1,

A(N) = C(N).

Proof From [6, p. 377, Entry 9(v) and (vi)]

2(@9(q") — 0@)e@®) = 2qf (—=¢*) f (=) x (@D x (@), (6.4)
(@@ +0@e@®) = 2 (=" F(=¢")x @ xq"). (6.5)

Adding (6.4) and (6.5), we obtain an identity equivalent to

(o) x(@)x(q")

x@Hx@® x@Hx @’
Replacing g by —q in (6.6), then subtracting the resulting identity from (6.6), we obtain an
identity equivalent to the following g-product
(—q: 4934 ™% (4:99%.q"%: 7%
(=% 4900 (0% 00 (4% 4%00(q%: )
4% 49@" 4" | (=45 47)00(=0"% 0 (@5 9P)0(@"; 470
@7 4900 @ 400 | (=47 4900 (=05 4000 (@3 4Do0(q%: 0o |
6.7)

af (=g f (=" + f(=¢% f(—q"") (6.6)

From [2, p. 1042], we note that
(=43 4o(=4": 4% (45 4H)@"%; 6% )
(=4% 4%00(=4% 4N (4% ¢%0(q% 71000
Employing (6.8) in (6.7), we arrive at the partition identity claimed in our Theorem 6.2. [

=2q(—4% ¢%)0o(—¢"% ¢'%) oo (6.8)

Example 14 Let N = 6. Then A(6) = C(6) = 10, we have the representations

13, =13, =11, +1, +1, =11, + 1, + 1, =9, +3, + 1, =94+ 3, + 1,
TS+, =T 45+ 1, =Tp+5 +1, =Ty +5, + 1,
84+4=84242=6+6=6+44+2=6+2+2+2=4+4+4
= 4444242 =442424242=242+242+4242.

10+2

Theorem 6.3 Let S denote the set consisting of one copy of the positive integers and one
additional copy of those positive integers that are multiples of 15. Let T denote the set
consisting of the positive integers that are not multiples of 3 or 5. Let A(N) be the number
of partitions of N into odd parts in S, let B(N) be the number of partitions of 2N — 2 into
even parts in S, let C(N) and D(N) be the number of partitions of 2N into, respectively,
odd parts in T and even parts in T and let E(N) be the number of partitions of 2N into
even number of even parts in T. Then,

(i) forN >1, A@N) = D(N) — B(N) = E(N) and
(i) for N >0, AQN + 1) = C(N).
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Proof From [6, p. 377, Entry 9(vii)], we note that

(V@@ = av @V @) o(~a)0(~4%) = (=) f (=) (=49 f (=¢").
(6.9)
Transcribing (6.9) into g-products, we deduce that

4% 49@"% 4% (@7 4%%@% 4" PO NEPREIE 6.10)
@ 0@ 00 (@1 qD00(q g0 T e '
Replacing g by —¢ in (6.10), we obtain
0% 495" 000 | (=47 49)00(=7: 4o
@% )o@ 40 (= 4Doo(—a"%: 4o
Subtracting (6.10) from (6.11), we find that

= (=¢; 4)oo(=4"; ¢ ") 0. (6.11)

(=4 :4%)00(=4": 400 — (45 4P 0(q": 47") 0
_ {(qS;q6)oo(q5;q1°)oo (—q3;q6)oo(—q5;qlo)oo} (6.12)

(7:9)50@"; 000 (=43 4Doo(—4"; 4300
On the other hand, adding (6.10) and (6.11), we find that
4% 4% (@' ')
(4% 4?0 (@*°; 4300 6.13)
@ 49%@% N (=47 4D00(—475 4" '
@:3)00@; 0300 (=45 4P 0o (—q"; 430

(=23 4M00(—4"%: 4300 + (73 4H00(@"5: %) 0 =2

Employing, (6.8) in (6.13), we obtain the equality
(—=q: 400(=0"% 770 + (01 4D (@ ¢*N)oo
(@% 49)00(q'%: 4" 2 a9 30. 30
=2 =2¢°(=q% 40 (=47 47 0
(4% 4%00(@%%; 430 * ~
Suppose that the moduli «, 8, ¥ and § are of degree 1, 3, 5, and 15, respectively. If m =
z1/z3 and m’ = z5/z15. Then [6, p. 384, Entry 11(viii)],

m (as )1/8 N <(1 —a)(1—9) )1/8 < ad(1 —a)(1 —9) )1/8 .
m By 1-paA-y) Byl —pd—-y) ' '
The above modular equation can be transformed into the q-product
@% 4%00(d"5 4" o0 (=4% 4%)oc(=¢"%; ¢'")ox
(4% 49003 30 (4% 4700 (=4 30) 0
_ 1@1490@ 4% (=471 4%0(=4% 4"
(@:49@"% 430 (=45 4Poo(=4"%; 43N0
Invoking (6.16) in (6.13), we have
(=4 : 400 (=4": 4*) 0 + (@ 4900 (@": ¢*)) oo
_ 0% 992" 40 | (=% 4%00(=¢""1 4" (6.17)
(4% 49000 30 (4% 4?00 (=670 300
It is now easy to see that (6.14), (6.17), and (6.12) are equivalent to the statements (ii) and
(1), respectively, in Theorem 6.3. O

(6.14)

] (6.16)
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Example 15 Let N = 10. Then A(20) = E(10) = 8, D(10) = 16, and B(10) = 8§, we
have the representations
19+ 1, =17, 4+3, =15 +5, =15 +5, =13, +7, =11, + 9,
=11, +5+3+1, =9 +7,+3 + 1,
164+4=14424+24+2=8+8+2+2=8+4+44+4=84+44+24+2+2+2
=44+4+4+44+24+2=44+4+2+24+24+2+2+2
=2424+24+242424+24+2+2+2,
16+4=16+2+2=14+4+2=14+24+24+2=8+84+4=8+8+2+2
=8+4+44+4=8+4+44+24+2=8+44+24+24+2+2
=8+4+2+24+2424+24+2=44+44+4+44+4=4+44+44+4+2+2
— A4 A4 442424242 =444 424242424242
=44+24+2+4+2+2424242+42=2+424+2+2+2+24+2+2+2+2,
18, =16, +2, =14, +4, =12, + 6, =12, +4, + 2, = 10, + 8,
=10, +6,+2, =8, 4+ 6, +4,.

Theorem 6.4 Let S denote the set consisting of one copy of the positive integers that are
multiples of 3 and one additional copy of those positive integers that are multiples of 5. Let
T denote the set consisting of one copy of the positive integers that are not multiples of 3 or
5. Let A(N) be the number of partitions of 2N + 1 into odd parts in S or into even parts
that are not multiples of 3 or 5, let B(N) be the number of partitions of 2N into even parts
in S or into even parts that are not multiples of 3 or 5, let C(N) be the number of partitions
of N into odd parts in S and let D(N) and E(N) be the number of partitions of 2N into,
respectively, odd parts in T and odd number of even parts in T. Then,

(i) for N > 1, A(N) = B(N),
(i) for N >0, CQN+1)= E(N) and C(2N) = D(N).

Proof From [6, p. 377, Entry 9(vii)], we note that

(V@@ + v @V @) o(-9e(=a'5) = F(~0) f (=47 1 (~a°) f (~4").
(6.18)

Transcribing (6.18) into g-products, we deduce that
(45 9%)o0(@"; 470 ‘ 4 4)0(@>; 470
(0% 4%90@: 4000 7 (9% 4% (@' ¢1%) 0

Replacing g by —¢ in (6.19), we obtain

(=45 4o (=4"; 40 Ly (4% 49)00(@™; ¢%)oo
(=43 490 (=0% 4% " (4% ¢920(q'% ¢'%) o0
Subtracting (6.19) from (6.20), we obtain the equality

=% 49" 4. (6.19)

= (=4 4900 (=¢%; ¢")os. (6.20)

oy (4% 49)00(@™; 4%
(4% 4900(g'% ¢'%) o0

(=4 4%)00(—4°: 400 — (4% ¢90(@%: 400 =

454700 (=400 (@34M)0(q": 470
(=4% 490 (=0% 4% (@%490(q% ¢

(6.21)
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Employing (6.8) in (6.21), we deduce that
(4% 490 (g ¢'°)
(=47 4900 (=% 4"Vo0 — (0% 4)00(q: 4" )ec ) g b o T i
(G740 (g5 ¢°%) 0 (6.22)
6. 6 0. 10v @% a5 q'% '
=24(—4% ¢ (—q"": ¢'?) : : —-2q
= " (@% 400 (@ )

Suppose that the moduli «, B, y, and § are of degree 1, 3, 5, and 15, respectively. If m =
z1/z3 and m’ = z5/z15. Then [6, p. 384, Entry 11(ix)],

1/8 _ _ 1/8 . . 1/8
_[m (@) N ((1 2l¢ y)) B (ﬁy(l A1 y)) 623
m’ od 1—-—a)—9) ad(l —a)(1 —=96)

Transforming (6.23) into g-products. Then invoking in (6.21), we find that
(=% 5 4%00(=% 4" o0 = (4% 4900 (0% 4o
_ 200007 4 (@%14D)0 @ ¢ (6.24)
(4% 490e(=¢"% ¢ (4% ¢ (@' ¢' )0 |

On the other hand adding (6.19) and (6.20), we find that
(=4 1 4%00(—=0%: 400 + (0% 4900 (@1 ¢'%) 0
(0000000 | (@50P50(q"%; 6700 (6.25)
 (0%4900(=0% 400 (0% 49504700
It is seen that (6.24), (6.25), and (6.22) have partition theoretic interpretation given in
Theorem 6.4 (ii) and (i), respectively. O

Example 16 Let N = 7. Then A(7) = B(7) = 14, we have the representations

15, = 15, =9, +44+2=9,+2+242=8+5,+2=8+4+3, =8+3, +2+2
Sp+A4+4+42=5,+442+242=5,+24+2+4+2+24+2=4+4+4+3,
44443, 4+242=4+43,+242+42+42=3,+2+2+2+242+42,
12,+2=10,+4=10, +2+2=8+6, =8 +4+2=8+2+2+2

= 64+44+4=64+442+2=6+2+2+42+2=4+4+4+42

= 444424242 =44242424242=242+42+2+2+2.

14

7 Partitions and Theta Constant Identities of Degree 63

Theorem 7.1 Let A(N) denote the number of partitions of 2N + 1 into parts congruent
to £6 (mod 18) or into distinct odd parts that are not multiples of 7 or 9 and let B(N)
denote the number of partitions of 2N + 1 into parts congruent to £14 (mod 42) or into
two different colors, with one color appearing at most once and only in odd parts and the
other color, also appearing at most once and only in odd multiples of 63. Then, for N > 0,

A(N) = B(N).

Proof From [6, p. 426, Entry 19(ii)], we note that
Vg (@) — ¢ @v@®) = (=% F(—¢®). (7.1)
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Multiplying (7.1) by 1/v(q)¥ (¢%), we obtain the equality

ACRIACRN o= f(=4°)f(=¢%)
V(@Y () V(Y (@)

Replacing g by —q in (7.2). Then subtracting (7.2) from the resulting identity, we find the
following equivalent g-product identity

(=4:49)00(=4%:19" )0 (@3 4%)0(q*: ¢"*)o0 1
(—=47:4")00(=4%14")o0  (47:0")0(q%: ¢") 0 | (@°. 4% ¢")e0

(7.2)

(7.3)

(—4:4900(—=4%: ") 00 — (4: 47)00(d%: ')

B (@', 4% ¢*)oo '
It is now easy to see that (7.3) gives partition-theoretic interpretation given in the
Theorem 7.1. O

Example 17 Let N = 12. Then A(12) = B(12) = 14, we have the representations

25 = 244+1=1946=19+5+1=17+54+3=154+6+3+1 =13 +12 =13+11+1
B3+6+6=13+64+54+1=124+124+1=1246+6+1=11+6+5+3
6+6+6+6+1,

25 =21434+1=194+54+1=174+74+1=174+54+3=15+94+1=154+743
14+11=144+74+34+1=1341141=134+94+3=134+7+5
=114944+1=94+7+5+3+1.

Remark 1 Identities (3.56), (3.57), (4.14), (4.19), (6.24), and (6.25) are special cases of
Warnaar’s identities [20], a bijective proof for the same is given by Sun Kim in [14]. Also,
Identities (3.57), (4.14), (6.12), and (6.25) were proved by N. D. Baruah and B. C. Berndt
in their paper [2] using Ramanujan’s modular equations.
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