124 research outputs found

    (Anti-)chiral Superfield Approach to Nilpotent Symmetries: Self-Dual Chiral Bosonic Theory

    Get PDF
    We exploit the beauty and strength of the symmetry invariant restrictions on the (anti-)chiral superfields to derive the Becchi-Rouet-Stora-Tyutin (BRST), anti-BRST and (anti-)co-BRST symmetry transformations in the case of a two (1+1)-dimensional (2D) self-dual chiral bosonic field theory within the framework of augmented (anti-)chiral superfield formalism. Our 2D ordinary theory is generalized onto a (2, 2)-dimensional supermanifold which is parameterized by the superspace variable Z^M = (x^\mu, \theta, \bar\theta) where x^\mu (with \mu = 0, 1) are the ordinary 2D bosonic coordinates and (\theta,\, \bar\theta) are a pair of Grassmannian variables with their standard relationships: \theta^2 = {\bar\theta}^2 =0, \theta\,\bar\theta + \bar\theta\theta = 0. We impose the (anti-)BRST and (anti-)co-BRST invariant restrictions on the (anti-)chiral superfields (defined on the (anti-)chiral (2, 1)-dimensional super-submanifolds of the above general (2, 2)-dimensional supermanifold) to derive the above nilpotent symmetries. We do not exploit the mathematical strength of the (dual-)horizontality conditions anywhere in our present investigation. We also discuss the properties of nilpotency, absolute anticommutativity and (anti-)BRST and (anti-)co-BRST symmetry invariance of the Lagrangian density within the framework of our augmented (anti-)chiral superfield formalism. Our observation of the absolute anticommutativity property is a completely novel result in view of the fact that we have considered only the (anti-)chiral superfields in our present endeavor.Comment: LaTeX file, 20 pages, journal reference is give

    Superspace Unitary Operator in QED with Dirac and Complex Scalar Fields: Superfield Approach

    Full text link
    We exploit the strength of the superspace (SUSP) unitary operator to obtain the results of the application of the horizontality condition (HC) within the framework of augmented version of superfield formalism that is applied to the interacting systems of Abelian 1-form gauge theories where the U(1) Abelian 1-form gauge field couples to the Dirac and complex scalar fields in the physical four (3 + 1)-dimensions of spacetime. These interacting theories are generalized onto a (4, 2)-dimensional supermanifold that is parametrized by the four (3 + 1)-dimensional (4D) spacetime variables and a pair of Grassmannian variables. To derive the (anti-)BRST symmetries for the matter fields, we impose the gauge invariant restrictions (GIRs) on the superfields defined on the (4, 2)-dimensional supermanifold. We discuss various outcomes that emerge out from our knowledge of the SUSP unitary operator and its hermitian conjugate. The latter operator is derived without imposing any operation of hermitian conjugation on the parameters and fields of our theory from outside. This is an interesting observation in our present investigation.Comment: LaTeX file, 11 pages, journal versio

    Curci-Ferrari Type Condition in Hamiltonian Formalism: A Free Spinning Relativistic Particle

    Full text link
    The Curci-Ferrari (CF)-type of restriction emerges in the description of a free spinning relativistic particle within the framework of Becchi-Rouet-Stora-Tyutin (BRST) formalism when the off-shell nilpotent and absolutely anticommuting (anti-)BRST symmetry transformations for this system are derived from the application of horizontality condition (HC) and its supersymmetric generalization (SUSY-HC) within the framework of superfield formalism. We show that the above CF-condition, which turns out to be the secondary constraint of our present theory, remains time-evolution invariant within the framework of Hamiltonian formalism. This time-evolution invariance (i) physically justifies the imposition of the (anti-)BRST invariant CF-type condition on this system, and (ii) mathematically implies the linear independence of BRST and anti-BRST symmetries of our present theory.Comment: LaTeX file, 11 Pages, journal versio

    Self-Dual Chiral Boson: Augmented Superfield Approach

    Get PDF
    We exploit the standard tools and techniques of the augmented version of Bonora-Tonin (BT) superfield formalism to derive the off-shell nilpotent and absolutely anticommuting (anti-)BRST and (anti-)co-BRST symmetry transformations for the Becchi-Rouet-Stora-Tyutin (BRST) invariant Lagrangian density of a self-dual bosonic system. In the derivation of the full set of the above transformations, we invoke the (dual-)horizontality conditions, (anti-)BRST and (anti-)co-BRST invariant restrictions on the superfields that are defined on the (2, 2)-dimensional supermanifold. The latter is parameterized by the bosonic variable x^\mu\,(\mu = 0,\, 1) and a pair of Grassmanian variables \theta and \bar\theta (with \theta^2 = \bar\theta^2 = 0 and \theta\bar\theta + \bar\theta\theta = 0). The dynamics of this system is such that, instead of the full (2, 2) dimensional superspace coordinates (x^\mu, \theta, \bar\theta), we require only the specific (1, 2)-dimensional super-subspace variables (t, \theta, \bar\theta) for its description. This is a novel observation in the context of superfield approach to BRST formalism. The application of the dual-horizontality condition, in the derivation of a set of proper (anti-)co-BRST symmetries, is also one of the new ingredients of our present endeavor where we have exploited the augmented version of superfield formalism which is geometrically very intuitive.Comment: LaTeX file, 27 pages, minor modifications, Journal reference is give

    Novel symmetries in the modified version of two dimensional Proca theory

    Full text link
    By exploiting Stueckelberg's approach, we obtain a gauge theory for the two (1+1)-dimensional (2D) Proca theory and demonstrate that this theory is endowed with, in addition to the usual Becchi-Rouet-Stora-Tyutin (BRST) and anti-BRST symmetries, the on-shell nilpotent (anti-)co-BRST symmetries, under which the total gauge-fixing term remains invariant. The anticommutator of the BRST and co-BRST (as well as anti-BRST and anti-co-BRST) symmetries define a unique bosonic symmetry in the theory, under which the ghost part of the Lagrangian density remains invariant. To establish connections of the above symmetries with the Hodge theory, we invoke a pseudo-scalar field in the theory. Ultimately, we demonstrate that the full theory provides a field theoretic example for the Hodge theory where the continuous symmetry transformations provide a physical realization of the de Rham cohomological operators and discrete symmetries of the theory lead to the physical realization of the Hodge duality operation of differential geometry. We also mention the physical implications and utility of our present investigation.Comment: LaTeX file, 21 pages, journal referenc

    Supervariable Approach to the Nilpotent Symmetries for a Toy Model of the Hodge Theory

    Get PDF
    We exploit the standard techniques of the supervariable approach to derive the nilpotent Becchi-Rouet-Stora-Tyutin (BRST) and anti-BRST symmetry transformations for a toy model of the Hodge theory (i.e., a rigid rotor) and provide the geometrical meaning and interpretation to them. Furthermore, we also derive the nilpotent (anti-)co-BRST symmetry transformations for this theory within the framework of the above supervariable approach. We capture the (anti-)BRST and (anti-)co-BRST invariance of the Lagrangian of our present theory within the framework of augmented supervariable formalism. We also express the (anti-)BRST and (anti-)co-BRST charges in terms of the supervariables (obtained after the application of the (dual-)horizontality conditions and (anti-)BRST and (anti-)co-BRST invariant restrictions) to provide the geometrical interpretations for their nilpotency and anticommutativity properties. The application of the dual-horizontality condition and ensuing proper (i.e., nilpotent and absolutely anticommuting) fermionic (anti-)co-BRST symmetries are completely novel results in our present investigation

    A magnetically recoverable nanocatalyst based on functionalized mesoporous silica

    Get PDF
    Nylon bags are used for packaging fire debris in several countries, particularly in Europe. The possibility of cross-contamination during transport from the fire scene to the laboratory, in normal casework conditions in the UK, was studied for two brands of nylon bags, using simulated heavy loaded fire debris. Three experiments were carried out with each brand, using as sample a piece of cotton fabric soaked with gasoline. One experiment was carried out using automotive paint thinner (oxygenated solvent). Each sample was sealed in a nylon bag and stored in contact with eight empty bags. The empty bags were analysed at regular intervals for a period of time up to eight weeks, using SPME and GC/MS. Cross-contamination was found for components of gasoline (toluene and C2-alkylbenzenes) in the two brands of nylon bags used, after 4 days and 2 weeks. Cross-contamination using automotive topcoat thinner was detected after 2 days

    Bone Marrow Stromal Cell Transplantation Mitigates Radiation-Induced Gastrointestinal Syndrome in Mice

    Get PDF
    Nuclear accidents and terrorism presents a serious threat for mass casualty. While bone-marrow transplantation might mitigate hematopoietic syndrome, currently there are no approved medical countermeasures to alleviate radiation-induced gastrointestinal syndrome (RIGS), resulting from direct cytocidal effects on intestinal stem cells (ISC) and crypt stromal cells. We examined whether bone marrow-derived adherent stromal cell transplantation (BMSCT) could restitute irradiated intestinal stem cells niche and mitigate radiation-induced gastrointestinal syndrome.Autologous bone marrow was cultured in mesenchymal basal medium and adherent cells were harvested for transplantation to C57Bl6 mice, 24 and 72 hours after lethal whole body irradiation (10.4 Gy) or abdominal irradiation (16-20 Gy) in a single fraction. Mesenchymal, endothelial and myeloid population were characterized by flow cytometry. Intestinal crypt regeneration and absorptive function was assessed by histopathology and xylose absorption assay, respectively. In contrast to 100% mortality in irradiated controls, BMSCT mitigated RIGS and rescued mice from radiation lethality after 18 Gy of abdominal irradiation or 10.4 Gy whole body irradiation with 100% survival (p<0.0007 and p<0.0009 respectively) beyond 25 days. Transplantation of enriched myeloid and non-myeloid fractions failed to improve survival. BMASCT induced ISC regeneration, restitution of the ISC niche and xylose absorption. Serum levels of intestinal radioprotective factors, such as, R-Spondin1, KGF, PDGF and FGF2, and anti-inflammatory cytokines were elevated, while inflammatory cytokines were down regulated.Mitigation of lethal intestinal injury, following high doses of irradiation, can be achieved by intravenous transplantation of marrow-derived stromal cells, including mesenchymal, endothelial and macrophage cell population. BMASCT increases blood levels of intestinal growth factors and induces regeneration of the irradiated host ISC niche, thus providing a platform to discover potential radiation mitigators and protectors for acute radiation syndromes and chemo-radiation therapy of abdominal malignancies
    • …
    corecore