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We exploit the standard techniques of the supervariable approach to derive the nilpotent Becchi-Rouet-Stora-Tyutin (BRST) and
anti-BRST symmetry transformations for a toy model of the Hodge theory (i.e., a rigid rotor) and provide the geometrical meaning
and interpretation to them. Furthermore, we also derive the nilpotent (anti-)co-BRST symmetry transformations for this theory
within the framework of the above supervariable approach. We capture the (anti-)BRST and (anti-)co-BRST invariance of the
Lagrangian of our present theory within the framework of augmented supervariable formalism. We also express the (anti-)BRST
and (anti-)co-BRST charges in terms of the supervariables (obtained after the application of the (dual-)horizontality conditions
and (anti-)BRST and (anti-)co-BRST invariant restrictions) to provide the geometrical interpretations for their nilpotency and
anticommutativity properties.The application of the dual-horizontality condition and ensuing proper (i.e., nilpotent and absolutely
anticommuting) fermionic (anti-)co-BRST symmetries are completely novel results in our present investigation.

1. Introduction

The model of a rigid rotor has played a very decisive
role in unraveling some of the deepest mysteries of nature
(especially in the context of atomic, molecular, and nuclear
physics). This model has also been shown to be a prototype
example of a gauge theory because it is endowed with the
first-class constraints in the language of Dirac’s prescription
for classification scheme [1, 2]. As a consequence, it has
also been discussed within the framework of Becchi-Rouet-
Stora-Tyutin (BRST) formalism for its quantization and
constraint analysis (see, e.g., [3] for details). We have shown,
in our recent publication [4], that this toy model has a
rich mathematical structure behind it because it provides a
tractable physical example for the Hodge theory (within the
framework of the BRST formalism) where the continuous
and discrete symmetries of the theory provide the physical
realizations of the de Rham cohomological operators of
differential geometry (see, e.g., [5–8]).

Two key mathematical properties, associated with the
(anti-)BRST symmetries (and their corresponding charges),

are the nilpotency property and the absolute anticommuta-
tivity. The superfield approach to BRST formalism (see, e.g.,
[9–13]) provides the geometrical origin and interpretation for
these abstract mathematical properties in the language of the
translational generators along the Grassmannian directions
of the supermanifold on which the ordinary gauge theories
are generalized.This approach has been applied in the context
of a rigid rotor, too, so that the geometrical basis for its
(anti-)BRST symmetries could be provided (see, e.g., [4]).
However, some unusual approximations have been made to
derive the correct results. One of the purposes of our present
investigation is to derive the nilpotent (anti-)BRST symmetry
transformations in a clear fashion on the basis of physically
intuitive restrictions and provide the geometrical origin for
them.

As has been pointed out earlier, the model of a rigid rotor
is a physical example of Hodge theory within the framework
of BRST formalism. Hence, there are nilpotent (anti-)BRST
and (anti-)co-BRST symmetries in the theory (besides a
unique bosonic and a ghost-scale symmetry). In this context,
it is a challenging problem to provide a geometrical basis
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for the (anti-)co-BRST symmetry transformations within the
framework of superfield approach to BRST formalism [5–8].
We resolve this issue in our present investigation by apply-
ing the augmented version of dual-horizontality condition
(DHC) and not only derive the proper nilpotent (anti-)co-
BRST symmetry transformations but also provide the geo-
metrical basis for their existence in the same manner as that
of the (anti-)BRST symmetries (which has already been done
in our earlier work [4]). In the application of the DHC, we
exploit the working-rule, established in [14], for the Hodge
duality ⋆ operation on a given supermanifold and obtain the
precise results which establishes the correctness of the rules
which have been laid down in our earlier publication [14].

In our present investigation, we have also provided the
geometrical basis for the nilpotency and absolute anticom-
mutativity of the (anti-)co-BRST charges (on the same lines
as we have provided for the (anti-)BRST charges in our earlier
work [4]). Furthermore, we also capture the (anti-)BRST and
(anti-)co-BRST invariance of the Lagrangian of our present
theory within the framework of the augmented version of
supervariable approach. This exercise leads to the geomet-
rical interpretation for the (anti-)BRST and (anti-)co-BRST
invariance of the Lagrangian in the language of the translation
of a specific sum of composite supervariables (obtained after
the appropriate set of restrictions) along the Grassmannian
directions of the chosen supermanifold on which our ordi-
nary theory is generalized within the framework of the super-
variable approach to BRST formalism.

Our present endeavor is essential on the following counts.
First, in our earlier work [4], we have made some approxima-
tions to obtain the proper (anti-)BRST symmetry transfor-
mations within the framework of augmented supervariable
approach. Thus, it is essential for us to derive the same
symmetry transformations in a physically intuitive manner
by exploiting the horizontality condition and (anti-)BRST
invariant restrictions. We have accomplished this goal in
our present endeavor. Second, to put the idea of the dual-
horizontality condition (DHC) on the firmer footings, it
is necessary for us to apply it to our present system and
derive the proper (anti-)co-BRST symmetry transformations.
We have obtained these symmetry transformations in a
consistent manner by exploiting the idea of DHC. Finally, it
is challenging for us to provide the geometrical basis for the
nilpotent (anti-)co-BRST transformations (and correspond-
ing generators) within the framework of the supervariable
approach (as has already been done in [4] for the (anti-)BRST
symmetries and their generators).We have achieved this goal,
too, in our present endeavor.

The material of our present paper is organized as follows.
In Section 2, we briefly mention about the nilpotent (anti-)
BRST and (anti-)co-BRST symmetries for the Lagrangian of
our present theory. Section 3 is devoted to the derivation of
nilpotent (anti-)BRST symmetries within the framework of
augmented supervariable formalism. Section 4 of our present
endeavor contains the application of dual-horizontality con-
dition and the derivation of the (anti-)co-BRST symmetries.
Section 5 is devoted to capturing the geometrical meaning
of the invariance of Lagrangian of our present theory under

(anti-)BRST and (anti-)co-BRST transformations. In Sec-
tion 6, we discuss the geometrical meaning of the nilpotency
property of the (anti-)BRST and (anti-)co-BRST charges by
expressing them in terms of the supervariables (obtained
after various appropriate restrictions). Finally, we make some
concluding remarks and point out a few future directions in
Section 7.

In our Appendix, we perform an explicit computation
which is used in the main body of our text in the context of
application of the dual-horizontality condition (DHC).

2. Preliminaries: Lagrangian and Symmetries

Webegin with the following (anti-)BRST and (anti-)co-BRST
invariant first-order Lagrangian for the rigid rotor (see, e.g.,
[3, 4] for details):

𝐿𝑏 =
̇𝑟𝑝𝑟 +

̇
𝜗𝑝𝜗 −

𝑝
2

𝜗

2𝑟
2
− 𝜆 (𝑟 − 𝑎) + 𝑏 (

̇
𝜆 − 𝑝𝑟) +

𝑏
2

2

− 𝑖
̇
𝐶
̇
𝐶 + 𝑖𝐶𝐶,

(1)

where 𝑟 and 𝜗 are the polar coordinates and their correspond-
ing generalized velocities are ̇𝑟 and ̇

𝜗. The momenta for the
particle (of mass𝑚 = 1), moving on a circle of radius 𝑎, are 𝑝𝑟
and𝑝𝜗. Here𝜆 is a Lagrangemultiplier that turns out to be the
“gauge” variable of our present theory. The variable 𝑏 is the
Nakanishi-Lautrup type of auxiliary variable and (𝐶)𝐶 are the
(anti)ghost fermionic (𝐶2 = 𝐶2 = 0, 𝐶𝐶 + 𝐶𝐶 = 0) variables.
All these variables are function of the evolution parameter 𝑡
and an overdot on the variables always denotes the derivative
with respect to it (i.e., ̇

𝜗 = 𝑑𝜗/𝑑𝑡,
̇
𝜆 = 𝑑𝜆/𝑑𝑡).

We observe that, under the following nilpotent (𝑠2
𝑏
=

𝑠
2

𝑎𝑏
= 0) and absolutely anticommuting (𝑠𝑏𝑠𝑎𝑏 + 𝑠𝑎𝑏𝑠𝑏 = 0)

continuous (anti-)BRST symmetry transformations (𝑠(𝑎)𝑏)

𝑠𝑏𝜆 =
̇
𝐶,

𝑠𝑏𝐶 = 𝑖𝑏,

𝑠𝑏𝑝𝑟 = −𝐶,

𝑠𝑏 [𝐶, 𝑟, 𝜗, 𝑝𝜗, 𝑏] = 0,

𝑠𝑎𝑏𝜆 =
̇
𝐶,

𝑠𝑎𝑏𝐶 = −𝑖𝑏,

𝑠𝑎𝑏𝑝𝑟 = −𝐶,

𝑠𝑎𝑏 [𝐶, 𝑟, 𝜗, 𝑝𝜗, 𝑏] = 0,

(2)

the Lagrangian 𝐿𝑏 transforms to the total time derivatives:

𝑠𝑎𝑏𝐿𝑏 =

𝑑

𝑑𝑡

[𝑏
̇
𝐶 − 𝐶 (𝑟 − 𝑎)] ,

𝑠𝑏𝐿𝑏 =

𝑑

𝑑𝑡

[𝑏
̇
𝐶 − 𝐶 (𝑟 − 𝑎)] ,

(3)



Advances in High Energy Physics 3

thereby rendering the action integral 𝑆 = ∫ 𝑑𝑡𝐿𝑏 invariant.
Hence, transformations (2) are the symmetry transformations
for the action 𝑆. There are other nilpotent (𝑠2

𝑑
= 𝑠
2

𝑎𝑑
= 0) and

absolutely anticommuting (𝑠𝑑𝑠𝑎𝑑 + 𝑠𝑎𝑑𝑠𝑑 = 0) symmetries in
the theory.These (anti-)co-BRST [or (anti-)dual-BRST] sym-
metry transformations (𝑠(𝑎)𝑑) are

𝑠𝑑𝜆 = 𝐶,

𝑠𝑑𝐶 = 𝑖 (𝑟 − 𝑎) ,

𝑠𝑑𝑝𝑟 =
̇
𝐶,

𝑠𝑑 [𝐶, 𝑟, 𝜗, 𝑝𝜗, 𝑏] = 0,

𝑠𝑎𝑑𝜆 = 𝐶,

𝑠𝑎𝑑𝐶 = −𝑖 (𝑟 − 𝑎) ,

𝑠𝑎𝑑𝑝𝑟 =
̇
𝐶,

𝑠𝑎𝑑 [𝐶, 𝑟, 𝜗, 𝑝𝜗, 𝑏] = 0,

(4)

leaving the Lagrangian absolutely invariant (i.e., 𝑠(𝑎)𝑑𝐿𝑏 = 0).
We have demonstrated that the action integral 𝑆 = ∫ 𝑑𝑡𝐿𝑏

and Lagrangian (𝐿𝑏) remain invariant under the continuous
(anti-)BRST and (anti-)co-BRST symmetry transformations,
respectively. Thus, according to Noether’s theorem, the fol-
lowing conserved and nilpotent (anti-)BRST (𝑄(𝑎)𝑏) and
(anti-)co-BRST (𝑄(𝑎)𝑑) charges, namely,

𝑄𝑏 = 𝑏
̇
𝐶 −

̇
𝑏𝐶,

𝑄𝑎𝑏 = 𝑏
̇
𝐶 −

̇
𝑏𝐶,

𝑄𝑑 = 𝑏𝐶 +
̇
𝑏
̇
𝐶,

𝑄𝑎𝑑 = 𝑏𝐶 +
̇
𝑏
̇
𝐶,

(5)

are the generators for the (anti-)BRST and (anti-)co-BRST
symmetry transformations, as it can be explicitly checked that

𝑠𝑟𝜙 = ±𝑖 [𝜙, 𝑄𝑟]±
, 𝑟 = 𝑏, 𝑎𝑏, 𝑑, 𝑎𝑑, (6)

for the generic variable 𝜙 = 𝑟, 𝜗, 𝑝𝑟, 𝑝𝜗, 𝜆, 𝑏, 𝐶, 𝐶. Here ±
signs, as the subscripts on the square bracket, correspond to
the (anti)commutator for the generic variable 𝜙 of our theory
being (fermionic) bosonic in nature.

Wewrap up this sectionwith the following remarks. First,
under the (anti-)BRST symmetry transformations, it is the
kinetic term [(

̇
𝜗𝑝𝜗) − (𝑝

2

𝜗
/2𝑟
2
)] = (1/2) ̇𝑟

2 ̇
𝜗

2

= (1/2)V2

that remains invariant. Second, the gauge-fixing term (
̇
𝜆 −

𝑝𝑟) turns out to be invariant quantity under the nilpotent
(anti-)co-BRST symmetry transformations.Third, the kinetic

term (1/2)V2 has its origin [4] in the exterior derivative 𝑑 =
𝑑𝑡𝜕𝑡 (with𝑑

2
= 0). Fourth, the gauge-fixing term (

̇
𝜆−𝑝𝑟) owes

its origin to the coexterior derivative 𝛿 = ∗𝑑∗ (with 𝛿2 = 0)
of differential geometry [4] where ∗ is the Hodge duality
operation. Fifth, the anticommutator of the (anti-)BRST
and (anti-)co-BRST symmetry transformations defines a
unique bosonic symmetry in the theory which corresponds
to the Laplacian operator of differential geometry. Finally, the
present toy model of a rigid rotor which turns out to be the
physical example of a Hodge theory within the framework of
BRST formalism [4].

3. (Anti-)BRST Symmetries:
Supervariable Formalism

In our earlier work [4], the (anti-)BRST symmetry trans-
formations have been obtained by exploiting the basic ideas
of supervariable formalism. However, there have been ad-
hoc assumptions and approximations in deriving the correct
results. In our present section, we exploit the horizontality
condition and (anti-)BRST invariant restriction to obtain the
appropriate (anti-)BRST symmetry transformations for our
system without making any approximations. Our method of
derivation is simpler andphysicallymore intuitive. To corrob-
orate these statements, first of all, we generalize the gauge and
(anti)ghost variables (i.e., 𝜆(𝑡), 𝐶(𝑡), 𝐶(𝑡)) onto (1, 2)-dim-
ensional supermanifold as supervariables:

𝜆 (𝑡) 󳨀→ Λ(𝑡, 𝜃, 𝜃) = 𝜆 (𝑡) + 𝜃𝑅 (𝑡) + 𝜃𝑅 (𝑡) + 𝑖𝜃𝜃𝑆 (𝑡) ,

𝐶 (𝑡) 󳨀→ 𝐹 (𝑡, 𝜃, 𝜃) = 𝐶 (𝑡) + 𝑖𝜃𝐵1 (𝑡) + 𝑖𝜃𝐵1 (𝑡) + 𝑖𝜃𝜃𝑠 (𝑡) ,

𝐶 (𝑡) 󳨀→ 𝐹 (𝑡, 𝜃, 𝜃) = 𝐶 (𝑡) + 𝑖𝜃𝐵2 (𝑡) + 𝑖𝜃𝐵2 (𝑡) + 𝑖𝜃𝜃𝑠 (𝑡) ,

(7)

where the expansions have been made along the Grassman-
nian directions (𝜃, 𝜃) of the (1, 2)-dimensional supermanifold
which is parametrized by the superspace variable 𝑍𝑀 =

(𝑡, 𝜃, 𝜃) and the secondary variables (𝑅, 𝑅, 𝑠, 𝑠) are fermionic
and (𝐵1, 𝐵1, 𝐵2, 𝐵2, 𝑆) are bosonic in nature. It is elementary
to check that, in the limit 𝜃 = 0, 𝜃 = 0, we get back the original
variables (𝜆(𝑡), 𝐶(𝑡), 𝐶(𝑡)) of our starting Lagrangian (1). We
christen the above supersymmetric generalized variables as
“supervariables” (and not superfields) because, in the limit 𝜃 =
𝜃 = 0, we retrieve back our basic dynamical variables (and not
the fields).

In one (0 + 1)-dimensional ordinary space, we note that
the 1-forms 𝑑 = 𝑑𝑡𝜕𝑡, 𝜆

(1)
= 𝑑𝑡𝜆(𝑡), lead to the definition of a

2-form 𝑑𝜆
(1)
= (𝑑𝑡 ∧ 𝑑𝑡)

̇
𝜆 = 0, where 𝑑 = 𝑑𝑡𝜕𝑡 is the exterior

derivative (with 𝑑2 = 0) and (𝑑𝑡 ∧ 𝑑𝑡) = 0. These operators
can be generalized onto (1, 2)-dimensional supermanifold to
their supersymmetric counterparts as

𝑑 󳨀→
̃
𝑑 = 𝑑Z𝑀𝜕𝑀 ≡ 𝑑𝑡𝜕𝑡 + 𝑑𝜃𝜕𝜃 + 𝑑𝜃𝜕𝜃, ̃

𝑑

2

= 0,

𝜆
(1)
󳨀→

̃
𝜆

(1)

= 𝑑𝑍
𝑀
𝐴𝑀 ≡ 𝑑𝑡Λ (𝑡, 𝜃, 𝜃) + 𝑑𝜃𝐹 (𝑡, 𝜃, 𝜃) + 𝑑𝜃𝐹 (𝑡, 𝜃, 𝜃) ,

(8)
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where the supervariables (Λ(𝑡, 𝜃, 𝜃), 𝐹(𝑡, 𝜃, 𝜃), 𝐹(𝑡, 𝜃, 𝜃)) form
a vector supermultiplet 𝐴𝑀 on the (1, 2)-dimensional super-
manifold whose expansions along the Grassmannian direc-
tions have been given in (7). In the above, we have taken
𝜕𝑀 = 𝜕/𝜕𝑍

𝑀
≡ (𝜕𝑡, 𝜕𝜃, 𝜕𝜃

) as the derivatives with respect
to the evolution parameter 𝑡 and the Grassmannian variables
(𝜃, 𝜃). The super 2-form, constructed with ̃𝑑 and ̃𝜆

(1)

, has the
following explicit form:

̃
𝑑
̃
𝜆

(1)

= (𝑑𝑡 ∧ 𝑑𝑡) (𝜕𝑡𝐹 − 𝜕𝜃Λ) + (𝑑𝑡 ∧ 𝑑𝜃) (𝜕𝑡𝐹 − 𝜕𝜃
Λ)

+ (𝑑𝜃 ∧ 𝑑𝜃) (𝜕𝜃𝐹) + (𝑑𝜃 ∧ 𝑑𝜃) (𝜕𝜃
𝐹)

+ (𝑑𝜃 ∧ 𝑑𝜃) (𝜕𝜃𝐹 + 𝜕𝜃
𝐹) .

(9)

The horizontality condition requires that 𝑑𝜆(1) = ̃
𝑑
̃
𝜆

(1)

= 0.
Thus, we obtain the following expressions for the secondary
variables in terms if the basic dynamical and auxiliary
variables; namely (see, e.g., [4] for details),

𝑅 =
̇
𝐶,

𝑅 =
̇
𝐶,

𝑆 =
̇
𝑏,

𝐵2 = 0,

𝐵1 = 0,

𝑠 = 0,

𝐵1 + 𝐵2 = 0,

𝑠 = 0.

(10)

The condition 𝐵1 + 𝐵2 = 0 is nothing but the Curci-Ferrari
type restriction which is trivial in our case. Thus, we choose
𝐵2 = −𝐵1 = 𝑏. This specific choice can be derived using the
(anti-)BRST invariant restriction, too. As a consequence, we
have the following expansions for the supervariables after the
application of the horizontality condition (HC):

Λ
(ℎ)
(𝑡, 𝜃, 𝜃) = 𝜆 (𝑡) + 𝜃 (

̇
𝐶) + 𝜃 (

̇
𝐶) + 𝜃𝜃 (𝑖

̇
𝑏)

≡ 𝜆 (𝑡) + 𝜃 (𝑠𝑎𝑏𝜆) + 𝜃 (𝑠𝑏𝜆)

+ 𝜃𝜃 (𝑠𝑏𝑠𝑎𝑏𝜆) ,

𝐹
(ℎ)
(𝑡, 𝜃, 𝜃) = 𝐶 (𝑡) + 𝜃 (−𝑖𝑏) + 𝜃 (0) + 𝜃𝜃 (0)

≡ 𝐶 (𝑡) + 𝜃 (𝑠𝑎𝑏𝐶) + 𝜃 (𝑠𝑏𝐶)

+ 𝜃𝜃 (𝑠𝑏𝑠𝑎𝑏𝐶) ,

𝐹

(ℎ)

(𝑡, 𝜃, 𝜃) = 𝐶 (𝑡) + 𝜃 (0) + 𝜃 (𝑖𝑏) + 𝜃𝜃 (0)

≡ 𝐶 (𝑡) + 𝜃 (𝑠𝑎𝑏𝐶) + 𝜃 (𝑠𝑏𝐶)

+ 𝜃𝜃 (𝑠𝑏𝑠𝑎𝑏𝐶) ,

(11)

where the superscript (ℎ), on the supervariables, denotes the
superexpansions, obtained after the application of the HC.
It is evident, from the above, that we have already derived
the (anti-)BRST symmetry transformations for the variables
(𝜆(𝑡), 𝐶(𝑡), 𝐶(𝑡)).

To derive the (anti-)BRST symmetries for themomentum
variable 𝑝𝑟(𝑡), we have to exploit the (anti-)BRST invari-
ant restrictions (BIRs). In this context, we note that the
(anti-)BRST invariant quantity (i.e., quantity present in the
square bracket),

𝑠(𝑎)𝑏 [𝑏 (𝑡) 𝑝𝑟 (𝑡) − 𝑖𝐶 (𝑡) 𝐶 (𝑡)] = 0, (12)

can be generalized onto the (1, 2)-dimensional supermanifold
as

𝐵 (𝑡, 𝜃, 𝜃) 𝑃𝑟 (𝑡, 𝜃, 𝜃) − 𝑖𝐹

(ℎ)

(𝑡, 𝜃, 𝜃) 𝐹
(ℎ)
(𝑡, 𝜃, 𝜃) . (13)

The (anti-)BRST invariance of the Nakanishi-Lautrup aux-
iliary variable 𝑏(𝑡) [i.e., 𝑠(𝑎)𝑏𝑏(𝑡) = 0] implies that 𝑏(𝑡) →
𝐵(𝑡, 𝜃, 𝜃) = 𝑏(𝑡). In other words, the supervariable 𝐵(𝑡, 𝜃, 𝜃)
would have no expansion along the Grassmannian directions
(𝜃, 𝜃). To proceed further, we take the general expansion for
the supervariable 𝑃𝑟(𝑡, 𝜃, 𝜃) as

𝑃𝑟 (𝑡, 𝜃, 𝜃) = 𝑝𝑟 (𝑡) + 𝜃𝐾 (𝑡) + 𝜃𝐾 (𝑡) + 𝑖𝜃𝜃𝐿 (𝑡) , (14)

andwe demand that the (anti-)BRST invariant quantity (𝑏𝑝𝑟−
𝑖𝐶𝐶) should remain independent of the “soul” coordinates
(𝜃, 𝜃). It will be noted that, in the old literature on superfield
approach to BRST formalism [13], the bosonic coordinates
have been christened as the “body” coordinates and Grass-
mannian coordinates have been called the “soul” coordinates
because the latter are very abstract and cannot be physically
realized in the ordinary space. In other words, we impose the
following restriction:

𝑏 (𝑡) 𝑃𝑟 (𝑡, 𝜃, 𝜃) − 𝑖𝐹

(ℎ)

(𝑡, 𝜃, 𝜃) 𝐹
(ℎ)
(𝑡, 𝜃, 𝜃)

= 𝑏 (𝑡) 𝑝𝑟 (𝑡) − 𝑖𝐶 (𝑡) 𝐶 (𝑡) ,

(15)

which leads to the determination of the secondary variables of
(14) in terms of the basic and auxiliary variables of our present
theory as

𝐾 = −𝐶,

𝐾 = −𝐶,

𝐿 = −𝑏.

(16)

The above results establish the bosonic nature of 𝐿 and
fermionic nature of (𝐾,𝐾). Thus, we have the following
expansions for 𝑃𝑟(𝑡, 𝜃, 𝜃):

𝑃
(𝑏)

𝑟
(𝑡, 𝜃, 𝜃) = 𝑝𝑟 (𝑡) + 𝜃 (−𝐶) + 𝜃 (−𝐶) + 𝜃𝜃 (−𝑖𝑏)

≡ 𝑝𝑟 (𝑡) + 𝜃 (𝑠𝑎𝑏𝑝𝑟) + 𝜃 (𝑠𝑏𝑝𝑟)

+ 𝜃𝜃 (𝑠𝑏𝑠𝑎𝑏𝑝𝑟) ,

(17)
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where the superscript (𝑏) stands for the supervariable
obtained after the application of the (anti-)BRST invariant
restriction (15). It is evident that we have found out the
(anti-)BRST symmetry transformations for 𝑝𝑟(𝑡), as

𝑠𝑏𝑝𝑟 = −𝐶,

𝑠𝑎𝑏𝑝𝑟 = −𝐶,

𝑠𝑏𝑠𝑎𝑏𝑝𝑟 = −𝑖𝑏.

(18)

We conclude that, for the derivation of the correct and
complete set of (anti-)BRST symmetries, we have to exploit
the HC and BIR (cf. (15)) together.

We close this section with the remarks that we have
obtained the proper (anti-)BRST symmetry transformations
for all the variables (𝜆, 𝐶, 𝐶, 𝑝𝑟) of our theory. Our method of
derivation of these (anti-)BRST symmetries is more physical
in content than the same derivation carried out in our earlier
work [4]. The key ideas that have been exploited together in
our present endeavor are the HC and (anti-)BRST invariant
restrictions (BIRs) which lead to the derivation of the full set
of proper (anti-)BRST symmetries. A close look at expansions
(11) and (17) demonstrates that

𝜕

𝜕𝜃

Ω
(ℎ,𝑏)

(𝑡, 𝜃, 𝜃)

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨𝜃=0

= 𝑠𝑎𝑏𝜔 (𝑡) ,

𝜕

𝜕𝜃

Ω
(ℎ,𝑏)

(𝑡, 𝜃, 𝜃)

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨𝜃=0

= 𝑠𝑏𝜔 (𝑡) ,

(19)

where 𝜔(𝑡) is the ordinary one (0 + 1)-dimensional variable
and Ω(ℎ,𝑏)(𝑡, 𝜃, 𝜃) are the supervariables obtained after HC
and BIRs (cf. (11), (17)). The above relationships provide
the geometrical meaning for the (anti-)BRST symmetry
transformations 𝑠(𝑎)𝑏. It states that the (anti-)BRST symmetry
transformations 𝑠(𝑎)𝑏. of an ordinary variable 𝜔(𝑡) is equiv-
alent to the translations of the corresponding supervariable
(cf. (11), (17)) along the Grassmannian directions (𝜃, 𝜃) of the
(1, 2)-dimensional supermanifold.Thenilpotency of 𝑠(𝑎)𝑏 (i.e.,
𝑠
2

(𝑎)𝑏
= 0) is connected with two successive translations (i.e.,

𝜕
2

𝜃
= 0, 𝜕

2

𝜃
= 0) along the Grassmannian directions (𝜃, 𝜃) of

our chosen (1, 2)-dimensional supermanifold.

4. Nilpotent (Anti-)Co-BRST Symmetries:
Supervariable Approach

In our present section, we will exploit the concept of dual-
horizontality condition to derive the nilpotent (anti-)co-
BRST symmetry transformations (cf. Section 2). The latter
are characterized by the key observation that the gauge-fixing
term (

̇
𝜆−𝑝𝑟) remains invariant under it.Thus, it is clear from

the key ideas of the augmented version of the supervariable
approach that this quantity would remain independent of the
“soul” coordinates (𝜃, 𝜃)when it is generalized onto the (1, 2)-
dimensional supermanifold. Towards this goal in mind, first
of all, we note that the following is true:

𝛿𝜆
(1)
= ∗𝑑 ∗ 𝜆

(1)
=

̇
𝜆, (20)

where ∗𝑑∗ is the coexterior derivative, 𝜆(1) = 𝑑𝑡𝜆(𝑡) is the 1-
form in one (0 + 1)-dimensional ordinary space, and (∗) is the
Hodge duality operation on 1D ordinary spacetimemanifold.
The invariance of the gauge-fixing term under the (anti-)co-
BRST symmetry transformations can be translated into the
following (anti-)co-BRST invariant restriction (CBIR) on the
supervariables of the (1, 2)-dimensional supermanifold:

⋆
̃
𝑑 ⋆

̃
𝜆

(1)

− 𝑃𝑟 (𝑡, 𝜃, 𝜃) = ∗𝑑 ∗ 𝜆
(1)
− 𝑝𝑟 (𝑡) ,

(21)

where (⋆) is the Hodge duality operation on the (1, 2)-
dimensional supermanifold and ̃𝜆

(1)

, ̃𝑑, 𝑃𝑟(𝑡, 𝜃, 𝜃) are defined
in (8) and (14). We christen the CBIR (21) as the dual-
horizontality condition (DHC) because it is the coexterior
derivative of differential geometry that plays a key role in the
above restriction.

We have the step-by-step computation of ⋆̃𝑑 ⋆ ̃
𝜆

(1)

in
our Appendix. Ultimately, the DHC (cf. (21)) leads to the
following equality:

(
̇
Λ + 𝜕𝜃𝐹 + 𝜕𝜃

𝐹) + 𝑠
𝜃𝜃
(𝜕𝜃𝐹) + 𝑠

𝜃 𝜃
(𝜕
𝜃
𝐹)

− [𝑝𝑟 (𝑡) + 𝜃𝐾 (𝑡) + 𝜃𝐾 (𝑡) + 𝑖𝜃𝜃𝐿 (𝑡)]

=
̇
𝜆 − 𝑝𝑟 (𝑡) .

(22)

It is clear that the coefficients of 𝑠𝜃𝜃 and 𝑠𝜃 𝜃 would be zero
because there are no such terms on the r.h.s. Thus, we have
the following results:

𝜕𝜃𝐹 = 0,

𝜕
𝜃
𝐹 = 0,

⇓

𝐵1 = 0,

𝐵2 = 0,

𝑠 = 0,

𝑠 = 0.

(23)

The above values imply that the reduced form of the expan-
sions for 𝐹(𝑡, 𝜃, 𝜃) and 𝐹(𝑡, 𝜃, 𝜃) (cf. (7)) are as given below:

𝐹
(𝑟)
(𝑡, 𝜃, 𝜃) = 𝐶 (𝑡) + 𝑖𝜃𝐵1 (𝑡) ,

𝐹

(𝑟)

(𝑡, 𝜃, 𝜃) = 𝐶 (𝑡) + 𝑖𝜃𝐵2 (𝑡) .

(24)

Plugging in these expansions and that of Λ(𝑡, 𝜃, 𝜃) from (7)
into the CBIR (cf. (21)), we obtain the following conditions
on the secondary variables:

𝐵1 + 𝐵2 = 0,

𝐾 =
̇
𝑅,

𝐾 =
̇
𝑅,

𝐿 =
̇
𝑆.

(25)
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In the above, the condition 𝐵1 + 𝐵2 = 0 is the analogue of
Curci-Ferrari restriction. Making the choice 𝐵1(𝑡) = B, we
get 𝐵2(𝑡) = −B. Substitution of these values into expansions
(7) and (24) leads to the following rereduced form of these
expansions:

𝐹
(𝑅)
(𝑡, 𝜃, 𝜃) = 𝐶 (𝑡) + 𝑖𝜃B,

𝐹

(𝑅)

(𝑡, 𝜃, 𝜃) = 𝐶 (𝑡) − 𝑖𝜃B,

𝑃
(𝑅)
(𝑡, 𝜃, 𝜃) = 𝑝𝑟 (𝑡) + 𝜃 (

̇
𝑅) + 𝜃 (

̇
𝑅) + 𝑖𝜃𝜃 (

̇
𝑆) .

(26)

The above expansions show that we have not yet found the
explicit expressions for the secondary variables in terms of
the basic and auxiliary variables.

The additional restrictions come from the following
observations:

𝑠(𝑎)𝑑 [
̇𝑟𝑝𝑟 − 𝑖

̇
𝐶
̇
𝐶] = 0,

𝑠(𝑎)𝑑 [𝜆 (𝑟 − 𝑎) − 𝑖𝐶𝐶] = 0.

(27)

The above (anti-)dual-BRST invariant quantities (which are
present in the square brackets) can be generalized onto
(1, 2)-dimensional supermanifold. By exploiting the idea of
augmented version of supervariable approach, we have to
demand that such invariant quantities should be independent
of the Grassmannian variables 𝜃 and 𝜃. Thus, we have the
following equality conditions on the supervariables of our
chosen supermanifold:

̇
𝑅 (𝑡, 𝜃, 𝜃) 𝑃

(𝑅)

𝑟
(𝑡, 𝜃, 𝜃)

− 𝑖
̇
𝐹

(𝑅)

(𝑡, 𝜃, 𝜃)
̇
𝐹

(𝑅)
(𝑡, 𝜃, 𝜃) = ̇𝑟𝑝𝑟 − 𝑖

̇
𝐶
̇
𝐶,

Λ (𝑡, 𝜃, 𝜃) [𝑅 (𝑡, 𝜃, 𝜃) − 𝑎]

− 𝑖𝐹

(𝑅)

(𝑡, 𝜃, 𝜃) 𝐹
(𝑅)
(𝑡, 𝜃, 𝜃) = 𝜆 (𝑟 − 𝑎) − 𝑖𝐶𝐶,

(28)

where the expressions for (𝑃(𝑟)
𝑟
, 𝐹
(𝑅)
, 𝐹

(𝑅)

) are given in (26)
and 𝑅(𝑡, 𝜃, 𝜃) is the generalization of 𝑟(𝑡) onto (1, 2)-dim-
ensional supermanifold. However, as we know that 𝑟(𝑡) is an
(anti-)co-BRST invariant (i.e., 𝑠(𝑎)𝑑𝑟(𝑡) = 0) quantity, we find
that 𝑅(𝑡, 𝜃, 𝜃) = 𝑟(𝑡). Plugging in these values into (28) and
Λ(𝑡, 𝜃, 𝜃) from (7), the above equality becomes

̇𝑟 [𝑝𝑟 + 𝜃 (
̇
𝑅) + 𝜃 (

̇
𝑅) + 𝑖𝜃𝜃 (

̇
𝑆)]

− 𝑖 [
̇
𝐶 − 𝑖𝜃

̇B] [
̇
𝐶 + 𝑖𝜃

̇B] = ̇𝑟𝑝𝑟 − 𝑖
̇
𝐶
̇
𝐶,

[𝜆 + 𝜃𝑅 + 𝜃𝑅 + 𝑖𝜃𝜃𝑆] (𝑟 − 𝑎)

− 𝑖 [𝐶 − 𝑖𝜃B] [𝐶 + 𝑖𝜃B] = 𝜆 (𝑟 − 𝑎) − 𝑖𝐶𝐶.

(29)

The above two equations in (29) yield the following beautiful
relationships:

̇B ̇
𝐶 =

̇
𝑅 ̇𝑟,

̇B
̇
𝐶 =

̇
𝑅 ̇𝑟,

̇B ̇B =
̇
𝑆 ̇𝑟,

B𝐶 = 𝑅 (𝑟 − 𝑎) ,

B𝐶 = 𝑅 (𝑟 − 𝑎) ,

BB = 𝑆 (𝑟 − 𝑎) .

(30)

Even after the relations in (30), we have not found the precise
expressions for the secondary variables in terms of the basic
and auxiliary variables of the theory. Thus, we have to look
for other (anti-)co-BRST invariant quantities of our present
theory.

We note that 𝑠𝑑[𝜆𝐶] = 0 and 𝑠𝑎𝑑[𝜆𝐶] = 0. These co-
BRST and anti-co-BRST invariant quantities would also be
independent of the “soul” coordinates 𝜃 and 𝜃 when they are
generalized onto the (1, 2)-dimensional supermanifold.Thus,
we have the following restrictions on the supervariables of the
above supermanifold:

Λ𝐹

(𝑅)

= 𝜆𝐶,

Λ𝐹
(𝑅)

= 𝜆𝐶.

(31)

Plugging in expansions from (7) and (26), we obtain the
following relationships:

𝑅𝐶 = 0,

𝑅B = 𝑆𝐶,

𝑅𝐶 = 𝑖𝜆B,

𝑅𝐶 = 0,

𝑅B = 𝑆𝐶,

𝑅𝐶 = −𝑖𝜆B.

(32)

The above relationships fix the value of 𝑅 and 𝑅 as 𝑅 ∝ 𝐶

and 𝑅 ∝ 𝐶. We make one of the simplest choices for the
secondary variables as 𝑅 = 𝐶 and 𝑅 = 𝐶. Once we make this
simple choice, the rest of the secondary variables of the super-
expansion also get fixed.

A careful observation of the above relationships (30) and
(32) leads to the following expressions for the secondary
variables in terms of basic variables of our theory:

𝑅 = 𝐶,

𝑅 = 𝐶,

B = (𝑟 − 𝑎) ,

𝑆 = (𝑟 − 𝑎) ≡B.

(33)
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Substitution of these values into expansions (7) and (26) leads
to the following:

Λ
(𝑑)
(𝑡, 𝜃, 𝜃) = 𝜆 (𝑡) + 𝜃 (𝐶) + 𝜃 (𝐶) + 𝜃𝜃 [𝑖 (𝑟 − 𝑎)]

≡ 𝜆 (𝑡) + 𝜃 (𝑠𝑎𝑑𝜆) + 𝜃 (𝑠𝑑𝜆)

+ 𝜃𝜃 (𝑠𝑑𝑠𝑎𝑑𝜆) ,

𝐹
(𝑑)
(𝑡, 𝜃, 𝜃) = 𝐶 (𝑡) + 𝜃 (0) + 𝜃 [𝑖 (𝑟 − 𝑎)] + 𝜃𝜃 (0)

≡ 𝐶 (𝑡) + 𝜃 (𝑠𝑎𝑑𝐶) + 𝜃 (𝑠𝑑𝐶)

+ 𝜃𝜃 (𝑠𝑑𝑠𝑎𝑑𝐶) ,

𝐹

(𝑑)

(𝑡, 𝜃, 𝜃) = 𝐶 (𝑡) + 𝜃 [−𝑖 (𝑟 − 𝑎)] + 𝜃 (0) + 𝜃𝜃 (0)

≡ 𝐶 (𝑡) + 𝜃 (𝑠𝑎𝑑𝐶) + 𝜃 (𝑠𝑑𝐶)

+ 𝜃𝜃 (𝑠𝑑𝑠𝑎𝑑𝐶) ,

𝑃
(𝑑)

𝑟
(𝑡, 𝜃, 𝜃) = 𝑝𝑟 (𝑡) + 𝜃 (

̇
𝐶) + 𝜃 (

̇
𝐶) + 𝜃𝜃 (𝑖 ̇𝑟)

≡ 𝑝𝑟 (𝑡) + 𝜃 (𝑠𝑎𝑑𝑝𝑟) + 𝜃 (𝑠𝑑𝑝𝑟)

+ 𝜃𝜃 (𝑠𝑑𝑠𝑎𝑑𝑝𝑟) ,

(34)

where the superscript (𝑑) denotes the expansion of the
supervariables after the application of DHC. We point out
thatwe have already derived the nilpotent and absolutely anti-
commuting (anti-)co-BRST symmetry transformations (4) in
the above superexpansions. We note, from the above expres-
sions, that there is a deep connection between the (anti-)co-
BRST symmetry transformations 𝑠(𝑎)𝑑 and the translational
generators (𝜕𝜃, 𝜕𝜃) along the Grassmannian directions of the
(1, 2)-dimensional supermanifold on which our theory has
been generalized. In fact, we have the following mappings:

𝜕

𝜕𝜃

Σ
(𝑑)
(𝑡, 𝜃, 𝜃)

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨𝜃=0

= 𝑠𝑎𝑑𝜎 (𝑡) ,

𝜕

𝜕𝜃

⇐⇒ 𝑠𝑎𝑑,

𝜕

𝜕𝜃

Σ
(𝑑)
(𝑡, 𝜃, 𝜃)

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨𝜃=0

= 𝑠𝑑𝜎 (𝑡) ,

𝜕

𝜕𝜃

⇐⇒ 𝑠𝑑,

𝜕

𝜕𝜃

𝜕

𝜕𝜃

Σ
(𝑑)
(𝑡, 𝜃, 𝜃) = 𝑠𝑑𝑠𝑎𝑑𝜎 (𝑡) ,

𝜕

𝜕𝜃

𝜕

𝜕𝜃

⇐⇒ 𝑠𝑑𝑠𝑎𝑑,

(35)

where 𝜎(𝑡) is the generic variable of 1D ordinary space and
Σ
(𝑑)
(𝑡, 𝜃, 𝜃) is the generic supervariable that is obtained in

(34) with full superexpansions.
Geometrically, we note that the co-BRST symmetry

transformations on a given variable 𝜎(𝑡) of the 1D theory is
equivalent to the translation of the corresponding supervari-
able Σ(𝑑)(𝑡, 𝜃, 𝜃) along the 𝜃 direction of the supermanifold
(where the Grassmannian direction 𝜃 is kept untouched).
Similarly, the geometrical origin and interpretation for the
anti-co-BRST symmetry transformation can be provided.We
further lay emphasis on the observation that the nilpotency
(𝑠2
(𝑎)𝑑

= 0) and absolute anticommutativity (𝑠𝑑𝑠𝑎𝑑 +𝑠𝑎𝑑𝑠𝑑 = 0)

properties of the (anti-)co-BRST symmetry transformations
𝑠(𝑎)𝑑 are deeply connected with such properties (i.e., 𝜕𝜃

2
=

𝜕
𝜃

2
= 0, 𝜕𝜃𝜕𝜃

+𝜕
𝜃
𝜕𝜃 = 0) associatedwith the translational gen-

erators 𝜕𝜃 and 𝜕𝜃 on the (1, 2)-dimensional supermanifold on
which our present theory is generalized.Thus, it is the super-
variable approach to BRST formalism that provides geomet-
rical meaning to the abstract mathematical properties (e.g.,
nilpotency and absolute anticommutativity) associated with
the (anti-)BRST symmetry transformations (and correspond-
ing (anti-)BRST charges). Furthermore, this formalism also
provides the interrelationships between nilpotency and anti-
commutativity properties (as we will see in Section 6 of our
present endeavor).

5. Invariance of Lagrangian:
Supervariable Approach

First of all, we note that the starting Lagrangian (1) can be
written in the following three different and distinct forms:

𝐿𝑏 =
̇𝑟𝑝𝑟 +

̇
𝜗𝑝𝜗 −

𝑝
2

𝜗

2𝑟
2
− 𝜆 (𝑟 − 𝑎)

+ 𝑠𝑏 [−𝑖𝐶{(
̇
𝜆 − 𝑝𝑟) +

𝑏

2

}]

≡ ̇𝑟𝑝𝑟 +
̇
𝜗𝑝𝜗 −

𝑝
2

𝜗

2𝑟
2
− 𝜆 (𝑟 − 𝑎)

+ 𝑠𝑎𝑏 [+𝑖𝐶{(
̇
𝜆 − 𝑝𝑟) +

𝑏

2

}]

≡ ̇𝑟𝑝𝑟 +
̇
𝜗𝑝𝜗 −

𝑝
2

𝜗

2𝑟
2
− 𝜆 (𝑟 − 𝑎)

+ 𝑠𝑏𝑠𝑎𝑏 [

𝑖

2

(𝜆
2
− 𝑝
2

𝑟
) +

𝐶𝐶

2

] ,

(36)

where it is basically the gauge-fixing and Faddeev-Popov
ghost terms that have been expressed in three different ways
because the original Lagrangian for the rigid rotor (without
the gauge-fixing and Faddeev-Popov ghost terms) is (see, e.g.,
[3] for details)

𝐿0 =
̇𝑟𝑝𝑟 +

̇
𝜗𝑝𝜗 −

𝑝
2

𝜗

2𝑟
2
− 𝜆 (𝑟 − 𝑎) .

(37)

To be precise, all the above three forms are interconnected
because the top two forms can be obtained from the bottom
relation if we exploit the absolute anticommutativity property
(𝑠𝑏𝑠𝑎𝑏 + 𝑠𝑎𝑏𝑠𝑏 = 0) of the nilpotent (𝑠2

(𝑎)𝑏
= 0) (anti-)BRST

symmetry transformations 𝑠(𝑎)𝑏. Towards our main goal of
expressing Lagrangian (1) in terms of the supervariables,
obtained after the application of suitable restrictions, first of
all, we generalize the original Lagrangian 𝐿0 onto (1, 2)-dim-
ensional supermanifold as

𝐿0 󳨀→
̃
𝐿0 =

̇𝑟𝑃
(𝑏)

𝑟
(𝑡, 𝜃, 𝜃) +

̇
𝜗𝑝𝜗 −

𝑝
2

𝜗

2𝑟
2
− Λ
(ℎ)
(𝑡, 𝜃, 𝜃) (𝑟 − 𝑎) ,

(38)
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where 𝑃(𝑏)
𝑟
(𝑡, 𝜃, 𝜃) and Λ(ℎ)(𝑡, 𝜃, 𝜃) are from (17) and (11). It is

straightforward to note that the (anti-)BRST invariance of the
action integral corresponding to this part of the Lagrangian
can be captured in the following expressions:

𝜕

𝜕𝜃

[
̃
𝐿0]

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨𝜃=0

= −

𝑑

𝑑𝑡

[𝐶 (𝑟 − 𝑎)] ⇐⇒

𝑠𝑎𝑏𝐿0 = −

𝑑

𝑑𝑡

[𝐶 (𝑟 − 𝑎)] ,

𝜕

𝜕𝜃

[
̃
𝐿0]

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨𝜃=0

= −

𝑑

𝑑𝑡

[𝐶 (𝑟 − 𝑎)] ⇐⇒

𝑠𝑏𝐿0 = −

𝑑

𝑑𝑡

[𝐶 (𝑟 − 𝑎)] ,

𝜕

𝜕𝜃

𝜕

𝜕𝜃

[
̃
𝐿0] = −𝑖

𝑑

𝑑𝑡

[𝑏 (𝑟 − 𝑎)] ⇐⇒

𝑠𝑏𝑠𝑎𝑏𝐿0 = −𝑖

𝑑

𝑑𝑡

[𝑏 (𝑟 − 𝑎)] ,

(39)

where inputs from expansions (11) and (17) have been taken
into account. Furthermore, we note that the following super-
variable generalizations are trivial:

𝑟 (𝑡) 󳨀→ 𝑅(𝑡, 𝜃, 𝜃) = 𝑟 (𝑡) ,

𝜗 (𝑡) 󳨀→ Θ(𝑡, 𝜃, 𝜃) = 𝜗 (𝑡) ,

𝑝𝜗 (𝑡) 󳨀→ 𝑃𝜗 (𝑡, 𝜃, 𝜃) = 𝑝𝜗 (𝑡) ,

(40)

because of the fact that these variables do not trans-
form under the (anti-)BRST symmetry transformations (i.e.,
𝑠(𝑎)𝑏[𝑟, 𝜗, 𝑝𝜗] = 0). In otherwords, there are noGrassmannian
expansions for these variables when they are generalized onto
(1, 2)-dimensional supermanifold.

In the above expressions (cf. (38), (39)), we have captured
the (anti-)BRST invariance of the starting Lagrangian 𝐿0 for
the rigid rotor in the language of supervariable approach.The

gauge-fixing and Faddeev-Popov ghost terms of the starting
Lagrangian (1),

𝐿gf + 𝐿FP = 𝑏 (
̇
𝜆 − 𝑝𝑟) +

𝑏
2

2

− 𝑖
̇
𝐶
̇
𝐶 + 𝑖𝐶𝐶, (41)

can be generalized onto the (1, 2)-dimensional supermanifold
as

̃
𝐿gf + ̃𝐿FP = 𝑏 (𝑡) [ ̇

Λ

(ℎ)
− 𝑃
(𝑏)

𝑟
] +

𝑏
2
(𝑡)

2

− 𝑖
̇
𝐹

(ℎ)

̇
𝐹

(ℎ)

+ 𝑖𝐹

(ℎ)

𝐹
(ℎ)
,

(42)

where we have taken 𝑏(𝑡) → 𝐵(𝑡, 𝜃, 𝜃) = 𝑏(𝑡) and the other
expansions are given in (11) and (17). It is straightforward to
check that

𝜕

𝜕𝜃

[
̃
𝐿gf + ̃𝐿FP]

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨𝜃=0

=

𝑑

𝑑𝑡

[𝑏
̇
𝐶] ≡ 𝑠𝑎𝑏 [𝐿gf + 𝐿FP] ,

𝜕

𝜕𝜃

[
̃
𝐿gf + ̃𝐿FP]

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨𝜃=0

=

𝑑

𝑑𝑡

[𝑏
̇
𝐶] ≡ 𝑠𝑏 [𝐿gf + 𝐿FP] ,

𝜕

𝜕𝜃

𝜕

𝜕𝜃

[
̃
𝐿gf + ̃𝐿FP] =

𝑑

𝑑𝑡

[𝑖𝑏
̇
𝑏] ≡ 𝑠𝑏𝑠𝑎𝑏 [𝐿gf + 𝐿FP] .

(43)

Hence, the total (anti-)BRST invariant Lagrangian 𝐿𝑏 = 𝐿0 +
𝐿gf + 𝐿FP can be expressed as the sum of (38) and (42) in the
supervariable approach (as ̃𝐿𝑏 = ̃

𝐿0 +
̃
𝐿gf + ̃𝐿FP). Now, it is

straightforward to check that the following are true:

𝜕

𝜕𝜃

[
̃
𝐿𝑏]

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨𝜃=0

=

𝑑

𝑑𝑡

[𝑏
̇
𝐶 − 𝐶 (𝑟 − 𝑎)] ≡ 𝑠𝑏 [𝐿0] ,

𝜕

𝜕𝜃

[
̃
𝐿𝑏]

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨𝜃=0

=

𝑑

𝑑𝑡

[𝑏
̇
𝐶 − 𝐶 (𝑟 − 𝑎)] ≡ 𝑠𝑎𝑏 [𝐿0] ,

𝜕

𝜕𝜃

𝜕

𝜕𝜃

[
̃
𝐿𝑏] =

𝑑

𝑑𝑡

[𝑖𝑏 {
̇
𝑏 − (𝑟 − 𝑎)}] ≡ 𝑠𝑏𝑠𝑎𝑏 [𝐿0] .

(44)

Thus, we have captured the (anti-)BRST invariance of the
action 𝑆 = ∫ 𝑑𝑡𝐿𝑏 in the language of supervariables (11)
and (17) (obtained after various appropriate restrictions) and
Grassmannian derivatives.

Taking the help ofmappings in (19) and expansions in (11)
and (17), it is straightforward to express Lagrangian (36) in
the language of supervariable on the (1, 2)-dimensional super-
manifold; namely,

𝐿𝑏 󳨀→
̃
𝐿𝑏 ≡

̃
𝐿0 +

𝜕

𝜕𝜃

[−𝑖𝐹

(ℎ)

{(
̇
Λ

(ℎ)
− 𝑃
(𝑏)

𝑟
) +

𝑏 (𝑡)

2

}]

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨𝜃=0

,

𝐿𝑏 󳨀→
̃
𝐿𝑏 ≡

̃
𝐿0 +

𝜕

𝜕𝜃

[𝑖𝐹
(ℎ)
{(

̇
Λ

(ℎ)
− 𝑃
(𝑏)

𝑟
) +

𝑏 (𝑡)

2

}]

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨𝜃=0

,

𝐿𝑏 󳨀→
̃
𝐿𝑏 ≡

̃
𝐿0 +

𝜕

𝜕𝜃

𝜕

𝜕𝜃

[

𝑖

2

(Λ
(ℎ)
Λ
(ℎ)
− 𝑃
(𝑏)

𝑟
𝑃
(𝑏)

𝑟
) +

𝐹
(ℎ)
𝐹

(ℎ)

2

] .

(45)



Advances in High Energy Physics 9

Using the nilpotency and anticommutativity properties of
the translational generators (𝜕𝜃, 𝜕𝜃), it is clear that the
(anti-)BRST invariance of the action integral corresponding
to the Lagrangian 𝐿𝑏 can be captured in the language of
supervariable approach because (𝜕𝜃̃𝐿𝑏), (𝜕𝜃̃𝐿𝑏), and (𝜕

𝜃
𝜕𝜃
̃
𝐿𝑏)

are all total time derivatives.

We concentrate now on the (anti-)co-BRST invariance of
Lagrangian (1) in the language of the supervariable approach.
Here, we will not be as much elaborate as we have been in
the case of (anti-)BRST invariance of the Lagrangian within
the framework of supervariable approach. We can generalize
Lagrangian (1) to the (1, 2)-dimensional supermanifold in a
straightforward manner as

𝐿𝑏 󳨀→
̃
𝐿

(𝑑)

𝑏
= ̇𝑟𝑃
(𝑑)

𝑟
+

̇
𝜗𝑝𝜗 −

𝑝
2

𝜗

2𝑟
2
− Λ
(𝑑)
(𝑟 − 𝑎) + 𝑏 (

̇
Λ

(𝑑)
− 𝑃
(𝑑)

𝑟
) +

𝑏
2

2

− 𝑖
̇
𝐹

(𝑑)

̇
𝐹

(𝑑)
+ 𝑖𝐹

(𝑑)

𝐹
(𝑑)
, (46)

where (Λ(𝑑), 𝑃(𝑑)
𝑟
, 𝐹
(𝑑)
, 𝐹

(𝑑)) are expansions (34) that have
been derived by exploiting the DHC (cf. (21)) and (anti-)co-
BRST invariant restrictions. The (anti-)co-BRST invariance
of the starting Lagrangian (1) can be captured within the
framework of supervariable approach, in the following fash-
ion:

𝜕

𝜕𝜃

[
̃
𝐿

(𝑑)

𝑏
]

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨𝜃=0

= 0 ⇐⇒ 𝑠𝑑 [𝐿𝑏] = 0,

𝜕

𝜕𝜃

[
̃
𝐿

(𝑑)

𝑏
]

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨𝜃=0

= 0 ⇐⇒ 𝑠𝑎𝑑 [𝐿𝑏] = 0,

𝜕

𝜕𝜃

𝜕

𝜕𝜃

[
̃
𝐿

(𝑑)

𝑏
] = 0 ⇐⇒ 𝑠𝑑𝑠𝑎𝑑 [𝐿𝑏] = 0.

(47)

Geometrically, the (anti-)co-BRST invariance can be
explained as follows. The super-Lagrangian ̃

𝐿

(𝑑)

𝑏
is the sum

of composite (super)variables (obtained after DHC and
appropriate set of (anti-)co-BRST invariant restrictions) such
that its translation along 𝜃 and 𝜃-directions yields zero result
(which is equivalent to 𝑠(𝑎)𝑑𝐿0 = 0).

6. Nilpotency and Anticommutativity:
Supervariable Approach to a 1D Rigid Rotor

In this section, we discuss in detail the nilpotency and
absolute anticommutativity of the (anti-)co-BRST charges
within the framework of supervariable approach. We also
briefly mention the same properties that are associated
with the (anti-)BRST charges because this has been already
discussed, to some extent, in our earlier work [4]. In fact,
we will pinpoint only a few subtle points connected with the
(anti-)BRST charges which have not been mentioned in our
earlier work [4]. For instance, wewill touch upon the absolute
anticommutativity of the BRST and anti-BRST charges and
its geometrical meaning in the language of the translational
generators (𝜕𝜃, 𝜕𝜃).

To begin with, first of all, we note that the (anti-)co-BRST
charges (𝑄(𝑎)𝑑) can be expressed in the following formswithin
the framework of the supervariable approach:

𝑄𝑎𝑑 = −𝑖

𝜕

𝜕𝜃

𝜕

𝜕𝜃

[
̇
Λ

(𝑑)
𝐹
(𝑑)
]

≡ −𝑖 ∫ 𝑑𝜃∫𝑑𝜃 [
̇
Λ

(𝑑)
𝐹
(𝑑)
] ,

𝑄𝑎𝑑 = −𝑖

𝜕

𝜕𝜃

[
̇
𝐹

(𝑑)
𝐹
(𝑑)
]

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨𝜃=0

≡ −𝑖 ∫ 𝑑𝜃 [
̇
𝐹

(𝑑)
𝐹
(𝑑)
]

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨𝜃=0

,

𝑄𝑎𝑑 = 𝑖

𝜕

𝜕𝜃

[
̇
𝐹

(𝑑)

𝐹
(𝑑)
− 𝑖

̇
Λ

(𝑑)
̇
𝑏 (𝑡)]

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨𝜃=0

≡ 𝑖 ∫ 𝑑𝜃 [
̇
𝐹

(𝑑)

𝐹
(𝑑)
− 𝑖

̇
Λ

(𝑑)
̇
𝑏 (𝑡)]

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨𝜃=0

,

𝑄𝑑 = −𝑖

𝜕

𝜕𝜃

𝜕

𝜕𝜃

[
̇
Λ

(𝑑)
𝐹

(𝑑)

]

≡ −𝑖 ∫ 𝑑𝜃∫𝑑𝜃 [
̇
Λ

(𝑑)
𝐹

(𝑑)

] ,

𝑄𝑑 = 𝑖

𝜕

𝜕𝜃

[
̇
𝐹

(𝑑)

𝐹

(𝑑)

]

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨𝜃=0

≡ 𝑖 ∫ 𝑑𝜃 [
̇
𝐹

(𝑑)

𝐹

(𝑑)

]

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨𝜃=0

,

𝑄𝑑 = −𝑖

𝜕

𝜕𝜃

[
̇
𝐹

(𝑑)
𝐹

(𝑑)

+ 𝑖
̇
Λ

(𝑑)
̇
𝑏 (𝑡)]

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨𝜃=0

≡ −𝑖 ∫ 𝑑𝜃 [
̇
𝐹

(𝑑)
𝐹

(𝑑)

+ 𝑖
̇
Λ

(𝑑)
̇
𝑏 (𝑡)]

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨𝜃=0

,

(48)

where superexpansions (34) have been taken into account
which have been derived after the application of the DHC
(cf. (21)) and several other (anti-)co-BRST invariant restric-
tions. Furthermore, consistent with superexpansions (34),
the (anti-)co-BRST charges in (5) have been reexpressed as
follows:

𝑄𝑑 =
̇𝑟𝐶 − (𝑟 − 𝑎)

̇
𝐶,

𝑄𝑎𝑑 =
̇𝑟𝐶 − (𝑟 − 𝑎)

̇
𝐶,

(49)

where we have used the Euler-Lagrange equations of motion
𝑏 = ̇𝑟 and ̇

𝑏 = −(𝑟 − 𝑎) that emerge from the starting
Lagrangian (1) because of the least action principle.There are
some alternative expressions for the ones quoted in (48). For
instance, one can replace ̇

Λ

(𝑑) by 𝑃(𝑑)
𝑟

and, once again, we
obtain the same expressions for 𝑄(𝑎)𝑑.

Due to the mappings listed in (35), we can express
expressions (48) in the ordinary space in the language of
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the nilpotent and absolutely anticommuting (anti-)co-BRST
transformations 𝑠𝑎𝑑 and ordinary variables as

𝑄𝑎𝑑 = −𝑖𝑠𝑑𝑠𝑎𝑑 [
̇
𝜆𝐶] ,

𝑄𝑑 = −𝑖𝑠𝑑𝑠𝑎𝑑 [
̇
𝜆𝐶] ,

𝑄𝑎𝑑 = −𝑖𝑠𝑑 [
̇
𝐶𝐶] ,

𝑄𝑑 = 𝑖𝑠𝑎𝑑 [
̇
𝐶𝐶] ,

𝑄𝑎𝑑 = 𝑖𝑠𝑎𝑑 [
̇
𝐶𝐶 − 𝑖

̇
𝜆
̇
𝑏] ,

𝑄𝑑 = −𝑖𝑠𝑑 [
̇
𝐶𝐶 + 𝑖

̇
𝜆
̇
𝑏] .

(50)

By exploiting the (anti-)co-BRST symmetry transformation
(4), it can be checked that the above expressions do match
with (49) (which is also equivalent to expressions given in (5)
in terms of the auxiliary variable 𝑏(𝑡)). From the above equa-
tions, it becomes transparent that the nilpotency of (anti-)
co-BRST charges is deeply connected with the nilpotency
(𝑠2
(𝑎)𝑑

= 0) of (anti-)co-BRST symmetry transformations as
well as the nilpotency (𝜕2

𝜃
= 0, 𝜕

2

𝜃
= 0) of the translational

generators 𝜕𝜃 and 𝜕𝜃 along the Grassmannian directions of
this (1, 2)-dimensional supermanifold. For instance, if we
consider 𝑄𝑑 = 𝑖𝑠𝑎𝑑[

̇
𝐶 𝐶], it is clear that 𝑠𝑑𝑄𝑑 = 𝑖{𝑄𝑑, 𝑄𝑑} = 0

because of 𝑠2
𝑑
= 0 and the basic definition of a generator

of a given transformation. Furthermore, from the suitable
expressions from (48), it is very evident that 𝜕

𝜃
𝑄𝑑 = 0 due

to 𝜕2
𝜃
= 0 which, in turn, implies that 𝑄2

𝑑
= 0. Such kind

of arguments can be also given for the nilpotency of 𝑄𝑎𝑑
as well. Geometrically, the equation 𝑄𝑑 = 𝜕

𝜃
[
̇
𝐹

(𝑑)

𝐹

(𝑑)

]|𝜃=0

implies that the co-BRST charge 𝑄𝑑 is already equivalent

to the translation of a composite supervariable ( ̇𝐹
(𝑑)

𝐹

(𝑑)

)

along the 𝜃-direction of the supermanifold.Thus, any further
translation along 𝜃-direction produces a zero result because
of the fermionic (𝜕2

𝜃
= 0) nature of 𝜕

𝜃
. Similar explanation for

the nilpotency of the suitable expression for𝑄𝑎𝑑 can be given
in the language of nilpotency (𝜕2

𝜃
= 0) of the translational

generator 𝜕𝜃 along 𝜃-direction.
Now we dwell a bit on the geometrical meaning of the

absolute anticommutativity of the (anti-)co-BRST charges
𝑄𝑎𝑑 in the language of the translational generators (𝜕𝜃 and
𝜕
𝜃
) along the Grassmannian directions of the supermanifold.

Let us take the example

𝑄𝑑 = −𝑖

𝜕

𝜕𝜃

[
̇
𝐹

(𝑑)
𝐹

(𝑑)

+ 𝑖
̇
Λ

(𝑑)
̇
𝑏 (𝑡)]

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨𝜃=0

≡ −𝑖𝑠𝑎𝑑 [
̇
𝐶𝐶 + 𝑖

̇
𝜆
̇
𝑏] .

(51)

It is self-evident that 𝑠𝑎𝑑𝑄𝑑 = 0 because of the nilpotency
(𝑠2
𝑎𝑑
= 0) of 𝑠𝑎𝑑 and 𝜕𝜃𝑄𝑑 = 0 because of the nilpotency (𝜕

2

𝜃
=

0) of the translational generator 𝜕𝜃. However, if we take the
definition of the generator for the transformation 𝑠𝑎𝑑, then,
𝑠𝑎𝑑𝑄𝑑 = 𝑖{𝑄𝑑, 𝑄𝑎𝑑} = 0 due to the nilpotency (𝑠2

𝑎𝑑
= 0) of

𝑠𝑎𝑑 which in turn implies the absolute anticommutativity of
the (anti-)co-BRST charges𝑄(𝑎)𝑑.Theother expression for𝑄𝑑
(e.g., 𝑄𝑑 = 𝜕

𝜃
[𝑖
̇
𝐹

(𝑑)

𝐹
(𝑑)
]|𝜃=0) implies that 𝜕

𝜃
𝑄𝑑 = 0. If we

operate by 𝜕
𝜃
on (51), we should get 𝜕

𝜃
𝑄𝑑 = 0. However, it

leads to the following explicit expressions:

𝜕

𝜕𝜃

𝑄𝑑 = 0 = −𝑖

𝜕

𝜕𝜃

𝜕

𝜕𝜃

[
̇
𝐹

(𝑑)
𝐹

(𝑑)

+ 𝑖
̇
Λ

(𝑑)
̇
𝑏 (𝑡)]

≡ −

𝑖

2

(𝜕𝜃𝜕𝜃
+ 𝜕
𝜃
𝜕𝜃) [

̇
𝐹

(𝑑)
𝐹

(𝑑)

+ 𝑖
̇
Λ

(𝑑)
̇
𝑏 (𝑡)] ,

(52)

which shows the absolute anticommutativity of the (anti-)co-
BRST charges because of the fact that 𝜕𝜃𝜕𝜃 + 𝜕𝜃𝜕𝜃 = 0. If
we take into account the mappings listed in (35), we obtain
𝑠𝑑𝑠𝑎𝑑 + 𝑠𝑎𝑑𝑠𝑑 = 0. The latter is equivalent to the absolute
anticommutativity of (anti-)co-BRST charges. On the other
hand, from (51), it is clear that 𝜕𝜃𝑄𝑑 = 0 because of the nilpo-
tency of 𝜕𝜃 (i.e., 𝜕

2

𝜃
= 0). Thus, we observe that the nilpotency

and anticommutativity are interrelated. These observations
are true because the nilpotency condition (𝜕2

𝜃
= 𝜕
2

𝜃
= 0) is a

limiting case of the absolute anticommutativity (𝜕𝜃𝜕𝜃+𝜕𝜃𝜕𝜃 =
0) because of the fact that (i) when we take 𝜕𝜃 = 𝜕𝜃, we obtain
𝜕
2

𝜃
= 0, and (ii) when we choose 𝜕

𝜃
= 𝜕𝜃, we get 𝜕2

𝜃
= 0.

Similar inferences could be drawn for the nilpotency (𝑠2
𝑎(𝑑)

=

0) of the (anti-)co-BRST symmetry transformations (𝑠(𝑎)𝑑)
(and their corresponding charges 𝑄(𝑎)𝑑) from the absolute
anticommutativity 𝑠𝑑𝑠𝑎𝑑 + 𝑠𝑎𝑑𝑠𝑑 = 0 (and their counter-
parts 𝑄𝑑𝑄𝑎𝑑 + 𝑄𝑎𝑑𝑄𝑑 = 0).

We close this section with a brief remark about the abso-
lute anticommutativity (𝑠𝑏𝑠𝑎𝑏 + 𝑠𝑎𝑏𝑠𝑏 = 0, 𝑄𝑏𝑄𝑎𝑏 + 𝑄𝑎𝑏𝑄𝑏 =

0) of the (anti-)BRST symmetries (and their corresponding
charges 𝑄(𝑎)𝑏) which have been discussed in our earlier
work [4] within the framework of supervariable approach.
For instance, we have obtained the results 𝑄𝑏 = 𝑖𝑠𝑎𝑏(𝐶

̇
𝐶),

𝑄𝑎𝑏 = −𝑖𝑠𝑏(𝐶
̇
𝐶), and their corresponding expressions in

supervariable approach. Now, it is crystal clear that 𝑠𝑎𝑏𝑄𝑏 =
𝑖{𝑄𝑏, 𝑄𝑎𝑏} = 0 due to the nilpotency (𝑠

2

𝑎𝑏
= 0) of 𝑠𝑎𝑏. Similarly,

𝑠𝑏𝑄𝑎𝑏 = 𝑖{𝑄𝑎𝑏, 𝑄𝑏} = 0 due to the nilpotency (𝑠2
𝑏
= 0)

of the BRST symmetry transformations 𝑠𝑏. Thus, we note
that the absolute anticommutativity of (anti-)BRST charges is
connected with the nilpotency (𝑠2

(𝑎)𝑏
= 0) of the (anti-)BRST

symmetry transformations 𝑠(𝑎)𝑏. These observations are log-
ical because as discussed earlier, the absolute anticommuta-
tivity (𝜕𝜃𝜕𝜃 + 𝜕𝜃𝜕𝜃 = 0) of the translational generators (𝜕𝜃, 𝜕𝜃)
is connected with the nilpotency (𝜕2

𝜃
= 0 = 𝜕

2

𝜃
) of these

translational operators which is the limiting cases when 𝜕𝜃 =
𝜕
𝜃
and/or 𝜕

𝜃
= 𝜕𝜃.

7. Conclusions

In our present endeavor, we have derived the (anti-)BRST
symmetry transformations by exploiting the ideas of (i)
horizontality condition and (ii) (anti-)BRST invariant restric-
tions, on the supervariables which are defined on the suitably
chosen (1, 2)-dimensional supermanifold (on which our
ordinary theory is generalized).These ideas are geometrically
and physically more intuitive as well as elegant and the latter
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condition is completely different from our earlier work [4]
where mathematically correct (but ad-hoc) approximations
have been made. In our present investigation, the geometri-
cal interpretation for the nilpotency and anticommutativity
properties, associated with the (anti-)BRST charges, remain
the same as what has been discussed in our earlier work [4]
on this topic.

One of the relatively novel features of our present inves-
tigation is the systematic application of the DHC for the
precise derivation of the proper (anti-)co-BRST symmetry
transformations where the Hodge duality (⋆) operation on
the (1, 2)-dimensional supermanifold plays a very decisive
role. We have verified that the working-rules, laid down in
[14], turn out to be correct because we are able to derive
the precise form of the nilpotent (anti-)co-BRST symmetry
transformations in a consistent manner. We have also pro-
vided the geometrical basis for the (anti-)co-BRST charges in
the language of the supervariables (obtained after the appli-
cation of the appropriate set of restrictions) and the transla-
tional generators along the Grassmannian directions of the
supermanifold.

It is very important for us to apply the key ideas of
DHC (and associated Hodge duality ⋆ operation) in the
context of the other higher dimensional physical systems of
interest (that have been proven to be the tractable physical
examples of Hodge theory) so that the working-rules, laid
down in [14], could be tested on any arbitrary (D, 2)-
dimensional supermanifold. For instance, we have already
discussed the utility of the Hodge duality ⋆ operation on the
(4, 2)-dimensional supermanifold in the case of 4D Abelian
gauge theory in our earlier work [14]. Thus, the application
of the DHC (in the context of some physical systems of
interest) remains a central issue for our future endeavors. It
is gratifying to state that we have already applied the DHC
in the cases of the modified versions of 2D Proca theory as
well as the chiral bosonic field theory and have obtained the
precise form of the (anti-)co-BRST symmetries [15, 16]. We
are currently busy with the ideas of the application of DHC
and our results would be reported in our future publications.

Appendix

We compute here the explicit expression for ⋆̃𝑑 ⋆ ̃𝜆
(1)

which
has been used in the DHC (21). Towards this goal in mind,
we exploit the working-rule, developed in [14], for the Hodge
duality operation on a (1, 2)-dimensional supermanifold. To
begin with, we have the following single (⋆) operation on the
super 1-form:

⋆
̃
𝜆

(1)

= ⋆ (𝑑𝑡Λ + 𝑑𝜃𝐹 + 𝑑𝜃𝐹) . (A.1)

According to the working-rule laid down in [14], we have the
following correct (⋆) operation on the 1-form differentials of
the (1, 2)-dimensional supermanifold:

⋆ (𝑑𝑡) = (𝑑𝜃 ∧ 𝑑𝜃) ,

⋆ (𝑑𝜃) = (𝑑𝑡 ∧ 𝑑𝜃) ,

⋆ (𝑑𝜃) = (𝑑𝑡 ∧ 𝑑𝜃) .

(A.2)

The above expressions physically imply that, on the (1, 2)-
dimensional supermanifold, the dual of the differential (𝑑𝑡)
is (𝑑𝜃∧𝑑𝜃). In exactly a similar fashion, the dual of the differ-
entials (𝑑𝜃) and (𝑑𝜃) has been expressed (taking into account
the physical arguments). These inputs imply the following
expression for the super 2-form that is derived from (A.1):

⋆
̃
𝜆

(1)

= (𝑑𝜃 ∧ 𝑑𝜃)Λ + (𝑑𝑡 ∧ 𝑑𝜃) 𝐹 + (𝑑𝑡 ∧ 𝑑𝜃) 𝐹. (A.3)

Now, we have to operate ̃𝑑 = 𝑑𝑡𝜕𝑡 + 𝑑𝜃𝜕𝜃 + 𝑑𝜃𝜕𝜃
on it. As a

consequence of this operation, we obtain the following super
3-form:

̃
𝑑 ⋆

̃
𝜆

(1)

= (𝑑𝑡 ∧ 𝑑𝜃 ∧ 𝑑𝜃)
̇
Λ + (𝑑𝑡 ∧ 𝑑𝜃 ∧ 𝑑𝑡)

̇
𝐹

+ (𝑑𝑡 ∧ 𝑑𝑡 ∧ 𝑑𝜃)
̇
𝐹 + (𝑑𝜃 ∧ 𝑑𝜃 ∧ 𝑑𝜃) 𝜕𝜃𝜆

− (𝑑𝜃 ∧ 𝑑𝑡 ∧ 𝑑𝜃) 𝜕𝜃𝐹

− (𝑑𝜃 ∧ 𝑑𝑡 ∧ 𝑑𝜃) 𝜕𝜃𝐹

+ (𝑑𝜃 ∧ 𝑑𝜃 ∧ 𝑑𝜃) 𝜕
𝜃
𝜆

− (𝑑𝜃 ∧ 𝑑𝑡 ∧ 𝑑𝜃) 𝜕
𝜃
𝐹

− (𝑑𝜃 ∧ 𝑑𝑡 ∧ 𝑑𝜃) 𝜕
𝜃
𝐹.

(A.4)

To fully calculate ⋆̃𝑑⋆ ̃𝜆
(1)

, we have to operate another (⋆) on
the above super 3-form to obtain a super 0-form. Before we
carry out the above operation, it is clear that the second and
third terms of the top line in (A.4) would be zero due to (𝑑𝑡 ∧
𝑑𝑡 = 0). Further, as the working-rules laid down in [14], the
3-forms with only Grassmannian differentials would be zero
on the (1, 2)-dimensional supermanifold because physically
such a supermanifold cannot accommodate a super 3-form
that is expressed in terms of the wedge products of three
Grassmannian variables only. Physically, the allowed super 3-
form differential wedge products on the (1, 2)-dimensional
supermanifold are (𝑑𝑡∧𝑑𝜃∧𝑑𝜃), (𝑑𝑡∧𝑑𝜃∧𝑑𝜃), (𝑑𝑡∧𝑑𝜃∧𝑑𝜃)
because these contain the wedge products that incorporate
one differential (𝑑𝑡) of bosonic nature and two differentials
[i.e., (𝑑𝜃 ∧ 𝑑𝜃), (𝑑𝜃 ∧ 𝑑𝜃) and (𝑑𝜃 ∧ 𝑑𝜃)] of the fermionic
nature. These arguments imply that the fourth and seventh
terms would be zero. To be more precise, we note that the
coefficients of 3-form differential wedge products (𝑑𝜃 ∧ 𝑑𝜃 ∧
𝑑𝜃) and (𝑑𝜃 ∧ 𝑑𝜃 ∧ 𝑑𝜃) do not contribute to the derivation
of the proper (anti-)co-BRST symmetries. Thus, these terms
are not physically important. As a consequence, only the
following terms would, ultimately, exist in (A.4):

̃
𝑑 ⋆

̃
𝜆

(1)

= (𝑑𝑡 ∧ 𝑑𝜃 ∧ 𝑑𝜃)
̇
Λ + (𝑑𝑡 ∧ 𝑑𝜃 ∧ 𝑑𝜃) 𝜕𝜃𝐹

+ (𝑑𝑡 ∧ 𝑑𝜃 ∧ 𝑑𝜃) 𝜕𝜃𝐹

+ (𝑑𝑡 ∧ 𝑑𝜃 ∧ 𝑑𝜃) 𝜕
𝜃
𝐹

+ (𝑑𝑡 ∧ 𝑑𝜃 ∧ 𝑑𝜃) 𝜕
𝜃
𝐹.

(A.5)
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It is worth pointing out that, mathematically, any arbitrary
number of differentials may exist in the wedge product
with only the Grassmannian differentials (e.g., 𝑑𝜃 ∧ 𝑑𝜃 ∧

𝑑𝜃 ∧ 𝑑𝜃, 𝑑𝜃 ∧ 𝑑𝜃 ∧ 𝑑𝜃 ∧ 𝑑𝜃 ⋅ ⋅ ⋅ ) and so forth. However,
physically, it is not permitted to have any arbitrary number
of wedge products of the Grassmannian differentials on a
given finite (𝐷, 2)-dimensional supermanifold on which a𝐷-
dimensional ordinary physical theory is generalized. Thus,
the derivation of (A.5) is physically correct. Now, the stage
is set to apply another (⋆) on it. Using the following inputs
(see, e.g., [14]) on the (1, 2)-dimensional supermanifold

⋆ (𝑑𝑡 ∧ 𝑑𝜃 ∧ 𝑑𝜃) = 1,

⋆ (𝑑𝑡 ∧ 𝑑𝜃 ∧ 𝑑𝜃) = 𝑠
𝜃𝜃
,

⋆ (𝑑𝑡 ∧ 𝑑𝜃 ∧ 𝑑𝜃) = 𝑠
𝜃 𝜃
,

(A.6)

where 𝑠𝜃𝜃 and 𝑠𝜃 𝜃 are symmetric in 𝜃 and 𝜃 indices, we obtain
the final expression

⋆
̃
𝑑 ⋆

̃
𝜆

(1)

= (
̇
𝜆 + 𝜕𝜃𝐹 + 𝜕𝜃

𝐹) + 𝑠
𝜃 𝜃
𝜕
𝜃
𝐹 + 𝑠
𝜃𝜃
𝜕𝜃𝐹,

(A.7)

which is used in the main body of our text (cf. (22)). The first
entry of (A.6) physically implies that the dual of the wedge
product (𝑑𝑡∧𝑑𝜃∧𝑑𝜃) is nothing but unity (i.e., a 0-form) as all
the three independent differentials of the (1, 2)-dimensional
supermanifold are present in it. On the other hand, the dual of
(𝑑𝑡∧𝑑𝜃∧𝑑𝜃) has been taken to be 𝑠𝜃𝜃 (i.e., a 0-form) because
when we take another (⋆) operation on it, we should get back
the original wedge product (𝑑𝑡 ∧ 𝑑𝜃 ∧ 𝑑𝜃) modulo a sign
factor. Similar is the argument for the definition of the duality
operation on the super 3-form wedge product (𝑑𝑡 ∧ 𝑑𝜃 ∧ 𝑑𝜃).

Wewould like to end this Appendix with the remarks that
another Hodge duality (⋆) operation on (A.2) is as follows:

⋆ [⋆ (𝑑𝑡)] = ⋆ (𝑑𝜃 ∧ 𝑑𝜃) = 𝑑𝑡,

⋆ [⋆ (𝑑𝜃)] = ⋆ (𝑑𝑡 ∧ 𝑑𝜃) = 𝑑𝜃,

⋆ [⋆ (𝑑𝜃)] = ⋆ (𝑑𝑡 ∧ 𝑑𝜃) = 𝑑𝜃.

(A.8)

Physically, a single Hodge duality operation on the super 2-
form differentials (𝑑𝜃 ∧ 𝑑𝜃) would be dual of this wedge
product on a (1, 2)-dimensional supermanifold. It is self-
evident that it should be a 1-form. Since the dual direction
of (𝜃, 𝜃) is 𝑡 on a (1, 2)-dimensional supermanifold, it is clear
that the resulting 1-form of the dual of (𝑑𝜃 ∧ 𝑑𝜃) would be
nothing but 𝑑𝑡. Similar explanation can be given for the other
double (⋆) operations on the above 1-form differentials. We
would like to lay emphasis on the importance of the factors
𝑠
𝜃𝜃 and 𝑠𝜃 𝜃 in the duality operation in (A.6). Their presence,
on the r.h.s., gives the idea that when we will take another (⋆)

operation on the super 3-forms (in (A.6)), wewill get back the
original super 3-forms (modulo some sign factors); namely,

⋆ [⋆ (𝑑𝑡 ∧ 𝑑𝜃 ∧ 𝑑𝜃)] = ⋆𝑠
𝜃𝜃
= (𝑑𝑡 ∧ 𝑑𝜃 ∧ 𝑑𝜃) ,

⋆ [⋆ (𝑑𝑡 ∧ 𝑑𝜃 ∧ 𝑑𝜃)] = ⋆𝑠
𝜃 𝜃
= (𝑑𝑡 ∧ 𝑑𝜃 ∧ 𝑑𝜃) ,

⋆ [⋆ (𝑑𝑡 ∧ 𝑑𝜃 ∧ 𝑑𝜃)] = ⋆ [1] = (𝑑𝑡 ∧ 𝑑𝜃 ∧ 𝑑𝜃) .

(A.9)

It is clear that the presence of 𝑠𝜃𝜃 and 𝑠𝜃 𝜃 do help us in getting
the original super 3-forms after the application of a couple
of successive Hodge duality operations. We have not got any
sign factors on the r.h.s. (other than (+) sign) because of the
fact that we have discussed the double duality operations on
a (1, 2)-dimensional supermanifold. However, we do get (±)
signs, after the above kind of double duality operations, on the
(2, 2)-dimensional supermanifold (see, e.g., [14] for details).
In a very recent work [17], the Hodge duality operation on a
supermanifold has been discussed in a very elegant manner
because of the fact that a whole lot of deep mathematical
concepts have been taken into account. We are sure that the
contents of this work [17] are important and they will be
very useful for us in our future work (when we will take into
account the supermanifolds which would not be necessarily
flat). For our present endeavor, however, we feel that the
material contained, in our earlier work [14] for the flat (1, 2)-
dimensional supermanifold, is good enough.
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